Hydrogel encapsulating gold nanoparticles for targeted delivery of nitroglycerin to reduce post-cardiac dysfunction inflammation by inhibiting the Wnt/β-catenin signaling pathway.
Ruixuan Li, Aixia Xu, Ye Chen, Yihui Li, Ru Fu, Weihong Jiang, Xiaogang Li
{"title":"Hydrogel encapsulating gold nanoparticles for targeted delivery of nitroglycerin to reduce post-cardiac dysfunction inflammation by inhibiting the Wnt/β-catenin signaling pathway.","authors":"Ruixuan Li, Aixia Xu, Ye Chen, Yihui Li, Ru Fu, Weihong Jiang, Xiaogang Li","doi":"10.1007/s10787-024-01580-2","DOIUrl":null,"url":null,"abstract":"<p><p>The discovery of nitric oxide's role in biological processes like platelet function, vasodilation, cell permeability, and inflammation has advanced our understanding of organic nitrate therapy's hemodynamic and nonhemodynamic effects. Short-term use of organic nitrates prevents left ventricular enlargement and infarct expansion. However, information on their long-term impact on LV remodeling in post-acute cardiac dysfunction patients is limited. In this study, we utilized an innovative active hydrogel with gelatin (Gel)/polyethylene glycol (PEG)/polylactic acid (PLA) encapsulating gold nanoparticles (AuNPs)-based drug delivery system for the sustained release of nitroglycerin (NTG). Gel/PEG/PLA/NTG/AuNPs hydrogel-based system is a non-transplant surgical method that can adhere to the surface of the heart and deliver the drug directly to the epicardium. Cardiac dysfunction was induced by ligating the left anterior descending coronary artery. Echocardiograms were used to study the pre- and post-operative hemodynamics. Hematoxylin and eosin (H&E) and Masson's trichrome stain (MTS) staining revealed that the acute myocardial infarction (AMI) rats' group had irregularly shaped fibers and a lack of transverse striations, whereas Gel/PEG/PLA/NTG/AuNPs hydrogel group showed significant improvement. Rats in the Gel/PEG/PLA hydrogel group demonstrated marked vasodilation, compared to the AMI group. Mechanistically, we determined that hydrogel disrupts the initiation of post-cardiac dysfunction via inhibiting Wnt/β-catenin transcriptional activation. Hence, the Gel/PEG/PLA/NTG/AuNPs hydrogel group effectively protected against ischemic injury and inflammation in AMI, demonstrating a novel method for treating acute cardiac dysfunction.</p>","PeriodicalId":13551,"journal":{"name":"Inflammopharmacology","volume":" ","pages":"3899-3911"},"PeriodicalIF":4.6000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inflammopharmacology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10787-024-01580-2","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/23 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The discovery of nitric oxide's role in biological processes like platelet function, vasodilation, cell permeability, and inflammation has advanced our understanding of organic nitrate therapy's hemodynamic and nonhemodynamic effects. Short-term use of organic nitrates prevents left ventricular enlargement and infarct expansion. However, information on their long-term impact on LV remodeling in post-acute cardiac dysfunction patients is limited. In this study, we utilized an innovative active hydrogel with gelatin (Gel)/polyethylene glycol (PEG)/polylactic acid (PLA) encapsulating gold nanoparticles (AuNPs)-based drug delivery system for the sustained release of nitroglycerin (NTG). Gel/PEG/PLA/NTG/AuNPs hydrogel-based system is a non-transplant surgical method that can adhere to the surface of the heart and deliver the drug directly to the epicardium. Cardiac dysfunction was induced by ligating the left anterior descending coronary artery. Echocardiograms were used to study the pre- and post-operative hemodynamics. Hematoxylin and eosin (H&E) and Masson's trichrome stain (MTS) staining revealed that the acute myocardial infarction (AMI) rats' group had irregularly shaped fibers and a lack of transverse striations, whereas Gel/PEG/PLA/NTG/AuNPs hydrogel group showed significant improvement. Rats in the Gel/PEG/PLA hydrogel group demonstrated marked vasodilation, compared to the AMI group. Mechanistically, we determined that hydrogel disrupts the initiation of post-cardiac dysfunction via inhibiting Wnt/β-catenin transcriptional activation. Hence, the Gel/PEG/PLA/NTG/AuNPs hydrogel group effectively protected against ischemic injury and inflammation in AMI, demonstrating a novel method for treating acute cardiac dysfunction.
期刊介绍:
Inflammopharmacology is the official publication of the Gastrointestinal Section of the International Union of Basic and Clinical Pharmacology (IUPHAR) and the Hungarian Experimental and Clinical Pharmacology Society (HECPS). Inflammopharmacology publishes papers on all aspects of inflammation and its pharmacological control emphasizing comparisons of (a) different inflammatory states, and (b) the actions, therapeutic efficacy and safety of drugs employed in the treatment of inflammatory conditions. The comparative aspects of the types of inflammatory conditions include gastrointestinal disease (e.g. ulcerative colitis, Crohn''s disease), parasitic diseases, toxicological manifestations of the effects of drugs and environmental agents, arthritic conditions, and inflammatory effects of injury or aging on skeletal muscle. The journal has seven main interest areas:
-Drug-Disease Interactions - Conditional Pharmacology - i.e. where the condition (disease or stress state) influences the therapeutic response and side (adverse) effects from anti-inflammatory drugs. Mechanisms of drug-disease and drug disease interactions and the role of different stress states
-Rheumatology - particular emphasis on methods of measurement of clinical response effects of new agents, adverse effects from anti-rheumatic drugs
-Gastroenterology - with particular emphasis on animal and human models, mechanisms of mucosal inflammation and ulceration and effects of novel and established anti-ulcer, anti-inflammatory agents, or antiparasitic agents
-Neuro-Inflammation and Pain - model systems, pharmacology of new analgesic agents and mechanisms of neuro-inflammation and pain
-Novel drugs, natural products and nutraceuticals - and their effects on inflammatory processes, especially where there are indications of novel modes action compared with conventional drugs e.g. NSAIDs
-Muscle-immune interactions during inflammation [...]