{"title":"Comparative Study of Potential Habitats for Two Endemic Grassland Caterpillars on the Qinghai-Tibet Plateau Based on BIOMOD2 and Land Use Data.","authors":"Chuanji Li, Yunxiang Liu, Youpeng Lai, Hainan Shao","doi":"10.3390/insects15100781","DOIUrl":null,"url":null,"abstract":"<p><p>This study has systematically investigated and compared the geographical distribution patterns and population density of <i>G. menyuanensis</i> (<i>Gm</i>) and <i>G. qinghaiensis</i> (<i>Gq</i>), which are endemic to the QTP region and inflict severe damage. Using a method combining the BIOMOD2 integration model (incorporating nine ecological niche models) and current species distribution data, this study has compared changes in potential habitats and distribution centers of these two species during ancient, present, and future climate periods and conducted a correlation test on the prediction results with land use types. The study results indicate that there are differences in geographical distribution patterns, distribution elevations, and population density of these two species. Compared with single models, the integration model exhibits prominent accuracy and stability with higher KAPPA, TSS, and AUC values. The distribution of suitable habitats for these two species is significantly affected by climatic temperature and precipitation. There is a significant difference between the potential habitats of these two species. <i>Gm</i> and <i>Gq</i> are distributed in the northeastern boundary area and the central and eastern areas of the QTP, respectively. The areas of their suitable habitats are significantly and positively correlated with the area of grassland among all land use types of QTP, with no correlations with the areas of other land use types of QTP. The potential habitats of both species during the paleoclimate period were located in the eastern and southeastern boundary areas of the QTP. During the paleoclimate period, their potential habitats expanded towards the Hengduan Mountains (low-latitude regions) in the south compared with their current suitable habitats. With the subsequent temperature rising, their distribution centers shifted towards the northeast (high-latitude) regions, which could validate the hypothesis that the Hengduan Mountains were refuges for these species during the glacial period. In the future, there will be more potential suitable habitats for these two species in the QTP. This study elucidates the ecological factors affecting the current distribution of these grass caterpillars, provides an important reference for designating the prevention and control areas for <i>Gm</i> and <i>Gq</i>, and helps protect the alpine meadow ecosystem in the region.</p>","PeriodicalId":13642,"journal":{"name":"Insects","volume":"15 10","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11508900/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Insects","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.3390/insects15100781","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
This study has systematically investigated and compared the geographical distribution patterns and population density of G. menyuanensis (Gm) and G. qinghaiensis (Gq), which are endemic to the QTP region and inflict severe damage. Using a method combining the BIOMOD2 integration model (incorporating nine ecological niche models) and current species distribution data, this study has compared changes in potential habitats and distribution centers of these two species during ancient, present, and future climate periods and conducted a correlation test on the prediction results with land use types. The study results indicate that there are differences in geographical distribution patterns, distribution elevations, and population density of these two species. Compared with single models, the integration model exhibits prominent accuracy and stability with higher KAPPA, TSS, and AUC values. The distribution of suitable habitats for these two species is significantly affected by climatic temperature and precipitation. There is a significant difference between the potential habitats of these two species. Gm and Gq are distributed in the northeastern boundary area and the central and eastern areas of the QTP, respectively. The areas of their suitable habitats are significantly and positively correlated with the area of grassland among all land use types of QTP, with no correlations with the areas of other land use types of QTP. The potential habitats of both species during the paleoclimate period were located in the eastern and southeastern boundary areas of the QTP. During the paleoclimate period, their potential habitats expanded towards the Hengduan Mountains (low-latitude regions) in the south compared with their current suitable habitats. With the subsequent temperature rising, their distribution centers shifted towards the northeast (high-latitude) regions, which could validate the hypothesis that the Hengduan Mountains were refuges for these species during the glacial period. In the future, there will be more potential suitable habitats for these two species in the QTP. This study elucidates the ecological factors affecting the current distribution of these grass caterpillars, provides an important reference for designating the prevention and control areas for Gm and Gq, and helps protect the alpine meadow ecosystem in the region.
InsectsAgricultural and Biological Sciences-Insect Science
CiteScore
5.10
自引率
10.00%
发文量
1013
审稿时长
21.77 days
期刊介绍:
Insects (ISSN 2075-4450) is an international, peer-reviewed open access journal of entomology published by MDPI online quarterly. It publishes reviews, research papers and communications related to the biology, physiology and the behavior of insects and arthropods. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.