Astragaloside promotes the secretion of MSC-derived exosomal miR-146a-5p by regulating TRAF6/NF-κB pathway to attenuate inflammation in high glucose-impaired endothelial cells.

IF 1.5 4区 生物学 Q4 CELL BIOLOGY
Jiye Chen, Jiayao Chen, Qinxia Li, Minxia Hu, Xingxing Zhong, Liang Yu, Xi Zhang, Hongyu Huang, Jing Liu, Ziyi Huang, Xinyi Liu, Wu Xiong
{"title":"Astragaloside promotes the secretion of MSC-derived exosomal miR-146a-5p by regulating TRAF6/NF-κB pathway to attenuate inflammation in high glucose-impaired endothelial cells.","authors":"Jiye Chen, Jiayao Chen, Qinxia Li, Minxia Hu, Xingxing Zhong, Liang Yu, Xi Zhang, Hongyu Huang, Jing Liu, Ziyi Huang, Xinyi Liu, Wu Xiong","doi":"10.1007/s11626-024-00984-2","DOIUrl":null,"url":null,"abstract":"<p><p>This study aimed to explore the potential of using mesenchymal stem cell (MSC)-derived exosomes (MSC-Exos) pre-treated with Astragaloside IV (ASIV) to alleviate inflammation in high glucose (HG)-damaged endothelial cells. MSC-Exos were isolated from untreated MSCs and ASIV-pre-treated MSCs, and their characteristics were assessed. The expression of miR-146a-5p in MSC-Exos was determined, and it was found that ASIV treatment enhanced its expression. In order to assess the impact of highly miR-146a-5p-expressing MSC-Exos on HG-injured endothelial cells, we established a model of HG-induced inflammation using human umbilical vein endothelial cells (HUVECs). The study measured cell viability, apoptosis, tube formation, and levels of inflammatory cytokines among the different treatment groups. It was found that transferring MSC-Exos with high miR-146a-5p expression to HG-damaged HUVECs increased cell viability and tube formation ability while reducing the number of apoptotic cells. Additionally, changes in inflammatory factors indicated a reduction in the inflammatory response. Further investigation demonstrated that miR-146a-5p inhibited the expression of TNF receptor associated factor 6 (TRAF6) and phosphorylated NF-κB, which are involved in the inflammatory response. This resulted in the alleviation of inflammation in HG-damaged endothelial cells. In summary, our findings indicate that ASIV treatment stimulated the secretion of MSC-Exos that exhibited increased levels of miR-146a-5p. These exosomes, in turn, regulated the TRAF6/NF-κB pathway. As a result of this modulation, the inflammatory response in HG-damaged endothelial cells was alleviated. These findings offer a fresh approach to addressing vascular complications associated with diabetes, which could lead to novel treatment strategies in the field.</p>","PeriodicalId":13340,"journal":{"name":"In Vitro Cellular & Developmental Biology. Animal","volume":" ","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"In Vitro Cellular & Developmental Biology. Animal","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s11626-024-00984-2","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

This study aimed to explore the potential of using mesenchymal stem cell (MSC)-derived exosomes (MSC-Exos) pre-treated with Astragaloside IV (ASIV) to alleviate inflammation in high glucose (HG)-damaged endothelial cells. MSC-Exos were isolated from untreated MSCs and ASIV-pre-treated MSCs, and their characteristics were assessed. The expression of miR-146a-5p in MSC-Exos was determined, and it was found that ASIV treatment enhanced its expression. In order to assess the impact of highly miR-146a-5p-expressing MSC-Exos on HG-injured endothelial cells, we established a model of HG-induced inflammation using human umbilical vein endothelial cells (HUVECs). The study measured cell viability, apoptosis, tube formation, and levels of inflammatory cytokines among the different treatment groups. It was found that transferring MSC-Exos with high miR-146a-5p expression to HG-damaged HUVECs increased cell viability and tube formation ability while reducing the number of apoptotic cells. Additionally, changes in inflammatory factors indicated a reduction in the inflammatory response. Further investigation demonstrated that miR-146a-5p inhibited the expression of TNF receptor associated factor 6 (TRAF6) and phosphorylated NF-κB, which are involved in the inflammatory response. This resulted in the alleviation of inflammation in HG-damaged endothelial cells. In summary, our findings indicate that ASIV treatment stimulated the secretion of MSC-Exos that exhibited increased levels of miR-146a-5p. These exosomes, in turn, regulated the TRAF6/NF-κB pathway. As a result of this modulation, the inflammatory response in HG-damaged endothelial cells was alleviated. These findings offer a fresh approach to addressing vascular complications associated with diabetes, which could lead to novel treatment strategies in the field.

黄芪皂苷通过调节TRAF6/NF-κB通路促进间充质干细胞衍生的外泌体miR-146a-5p的分泌,从而减轻高血糖受损内皮细胞的炎症反应。
本研究旨在探索使用经黄芪甲苷IV(ASIV)预处理的间充质干细胞(MSC)衍生外泌体(MSC-Exos)缓解高糖(HG)损伤的内皮细胞炎症的潜力。从未经处理的间充质干细胞和经ASIV预处理的间充质干细胞中分离出间充质干细胞-Exos,并对其特征进行了评估。测定了miR-146a-5p在间充质干细胞-Exos中的表达,发现ASIV处理增强了miR-146a-5p的表达。为了评估高miR-146a-5p表达的间充质干细胞-Exos对HG损伤的内皮细胞的影响,我们利用人体脐静脉内皮细胞(HUVECs)建立了一个HG诱导的炎症模型。研究测量了不同处理组的细胞活力、凋亡、管形成和炎症细胞因子水平。研究发现,将具有高 miR-146a-5p 表达的间充质干细胞-Exos 移植到 HG 损伤的 HUVECs 中,可提高细胞活力和管道形成能力,同时减少凋亡细胞的数量。此外,炎症因子的变化也表明炎症反应有所减轻。进一步的研究表明,miR-146a-5p 能抑制参与炎症反应的 TNF 受体相关因子 6(TRAF6)和磷酸化 NF-κB 的表达。这导致 HG 损伤的内皮细胞的炎症得到缓解。总之,我们的研究结果表明,ASIV 治疗刺激了间充质干细胞外泌体的分泌,这些外泌体的 miR-146a-5p 含量增加。这些外泌体反过来又调节了 TRAF6/NF-κB 通路。通过这种调节,HG 损伤的内皮细胞的炎症反应得到了缓解。这些发现为解决与糖尿病相关的血管并发症提供了一种全新的方法,可为该领域带来新的治疗策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.70
自引率
4.80%
发文量
96
审稿时长
3 months
期刊介绍: In Vitro Cellular & Developmental Biology - Animal is a journal of the Society for In Vitro Biology (SIVB). Original manuscripts reporting results of research in cellular, molecular, and developmental biology that employ or are relevant to organs, tissue, tumors, and cells in vitro will be considered for publication. Topics covered include: Biotechnology; Cell and Tissue Models; Cell Growth/Differentiation/Apoptosis; Cellular Pathology/Virology; Cytokines/Growth Factors/Adhesion Factors; Establishment of Cell Lines; Signal Transduction; Stem Cells; Toxicology/Chemical Carcinogenesis; Product Applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信