Kristin Annawald, Katrin Streckfuss-Bömeke, Thomas Meyer
{"title":"Methamphetamine-induced cardiotoxicity: in search of protective transcriptional mechanisms.","authors":"Kristin Annawald, Katrin Streckfuss-Bömeke, Thomas Meyer","doi":"10.1007/s00059-024-05279-6","DOIUrl":null,"url":null,"abstract":"<p><p>Crystalline methamphetamine hydrochloride is an illegal drug with a high addictive potential, better known by its colloquial name \"ice\" or \"crystal meth\". The abuse of this drug has led to significant health problems worldwide. Like other amphetamine-type stimulants, chronic consumption of methamphetamine leads to direct toxic effects on the central nervous system, causing cognitive impairment, depressive behavior, and other severe neurological or psychiatric symptoms. Besides its neurotoxicity, the drug exhibits numerous deleterious effects on the cardiovascular system, including hypertension, accelerated atherosclerosis, vasospasm-induced acute coronary syndromes, sudden cardiac death, and dilated cardiomyopathy with congestive heart failure and left ventricular dysfunction. The excessive release of catecholamines upon methamphetamine exposure causes vasoconstriction and vasospasm, which ultimately lead to hypertension, tachycardia, endothelial dysfunction, and cardiotoxicity. While numerous studies have focused on transcription factors expressed in the brain that cause the neurotoxic effects of the drug, much less is known about transcription factors involved in the development of methamphetamine-induced heart failure. In this article, we provide an overview of the Janus kinase-signal transducer and activator of transcription 3 (JAK-STAT3) pathway involved in ischemia/reperfusion injury in the myocardium, which may be activated by the vasospasm-inducing action of the drug. However, much more work is needed to decipher the precise role of STAT protein family members, including the potentially cardioprotective STAT3, in the pathogenesis of methamphetamine-induced cardiotoxicity.</p>","PeriodicalId":12863,"journal":{"name":"Herz","volume":" ","pages":"434-440"},"PeriodicalIF":1.1000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11602861/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Herz","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00059-024-05279-6","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/25 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Crystalline methamphetamine hydrochloride is an illegal drug with a high addictive potential, better known by its colloquial name "ice" or "crystal meth". The abuse of this drug has led to significant health problems worldwide. Like other amphetamine-type stimulants, chronic consumption of methamphetamine leads to direct toxic effects on the central nervous system, causing cognitive impairment, depressive behavior, and other severe neurological or psychiatric symptoms. Besides its neurotoxicity, the drug exhibits numerous deleterious effects on the cardiovascular system, including hypertension, accelerated atherosclerosis, vasospasm-induced acute coronary syndromes, sudden cardiac death, and dilated cardiomyopathy with congestive heart failure and left ventricular dysfunction. The excessive release of catecholamines upon methamphetamine exposure causes vasoconstriction and vasospasm, which ultimately lead to hypertension, tachycardia, endothelial dysfunction, and cardiotoxicity. While numerous studies have focused on transcription factors expressed in the brain that cause the neurotoxic effects of the drug, much less is known about transcription factors involved in the development of methamphetamine-induced heart failure. In this article, we provide an overview of the Janus kinase-signal transducer and activator of transcription 3 (JAK-STAT3) pathway involved in ischemia/reperfusion injury in the myocardium, which may be activated by the vasospasm-inducing action of the drug. However, much more work is needed to decipher the precise role of STAT protein family members, including the potentially cardioprotective STAT3, in the pathogenesis of methamphetamine-induced cardiotoxicity.
期刊介绍:
Herz is the high-level journal for further education for all physicians interested in cardiology. The individual issues of the journal each deal with specific topics and comprise review articles in English and German written by competent and esteemed authors. They provide up-to-date and comprehensive information concerning the speciality dealt with in the issue. Due to the fact that all relevant aspects of the pertinent topic of an issue are considered, an overview of the current status and progress in cardiology is presented. Reviews and original articles round off the spectrum of information provided.