Self-Degradable Rubber Plug for Temporary Plugging and Its Degradation Mechanism.

IF 5 3区 化学 Q1 POLYMER SCIENCE
Gels Pub Date : 2024-09-25 DOI:10.3390/gels10100615
Fan Yang, Fan Li, Renjing Ji, Xiaorong Yu, Huan Yang, Gaoshen Su
{"title":"Self-Degradable Rubber Plug for Temporary Plugging and Its Degradation Mechanism.","authors":"Fan Yang, Fan Li, Renjing Ji, Xiaorong Yu, Huan Yang, Gaoshen Su","doi":"10.3390/gels10100615","DOIUrl":null,"url":null,"abstract":"<p><p>A self-degradable rubber plug (SDRP) was developed to address issues in existing crosslinked polymer temporary plugging technology, such as poor self-degradation properties. The synthesis formula was optimized using response surface analysis, resulting in an optimized composition of the SDRP: 13 wt% monomer, 0.02 wt% initiator, 0.7 wt% crosslinker, and 1.8 wt% degradation catalyst. Under the condition of 70-120 °C, the SDRP was transformed from a liquid to a solid gel in 30-110 min; the degradation time was 3-10 days, and the viscosity of the completely degraded solution was lower than 20 mPa·s. At an injection volume of 1 PV SDPR, a breakthrough pressure of 8.34 MPa was achieved. The hydrolysis of the unstable crosslinker was found to have caused the breakage of the SDRP. Over time, the functional groups within the unstable crosslinker underwent hydrolysis due to the combined effects of temperature and the degradation catalyst. This process led to the disruption of crosslinking points, resulting in a gradual deterioration of the network structure. As a consequence, some immobile water was converted into free water. The mobility of water molecules increased until the plug was completely degraded into a viscous liquid. This study enriches the temporary plugging gel system.</p>","PeriodicalId":12506,"journal":{"name":"Gels","volume":"10 10","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11507129/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gels","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3390/gels10100615","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

A self-degradable rubber plug (SDRP) was developed to address issues in existing crosslinked polymer temporary plugging technology, such as poor self-degradation properties. The synthesis formula was optimized using response surface analysis, resulting in an optimized composition of the SDRP: 13 wt% monomer, 0.02 wt% initiator, 0.7 wt% crosslinker, and 1.8 wt% degradation catalyst. Under the condition of 70-120 °C, the SDRP was transformed from a liquid to a solid gel in 30-110 min; the degradation time was 3-10 days, and the viscosity of the completely degraded solution was lower than 20 mPa·s. At an injection volume of 1 PV SDPR, a breakthrough pressure of 8.34 MPa was achieved. The hydrolysis of the unstable crosslinker was found to have caused the breakage of the SDRP. Over time, the functional groups within the unstable crosslinker underwent hydrolysis due to the combined effects of temperature and the degradation catalyst. This process led to the disruption of crosslinking points, resulting in a gradual deterioration of the network structure. As a consequence, some immobile water was converted into free water. The mobility of water molecules increased until the plug was completely degraded into a viscous liquid. This study enriches the temporary plugging gel system.

用于临时堵塞的自降解橡胶塞及其降解机理。
为解决现有交联聚合物临时堵塞技术中存在的问题(如自降解性能差),开发了一种自降解橡胶塞(SDRP)。利用响应面分析法对合成配方进行了优化,最终确定了 SDRP 的优化组成:13 wt%的单体、0.02 wt%的引发剂、0.7 wt%的交联剂和 1.8 wt%的降解催化剂。在 70-120 °C 的条件下,SDRP 在 30-110 分钟内由液态转变为固态凝胶;降解时间为 3-10 天,完全降解溶液的粘度低于 20 mPa-s。当注入量为 1 PV SDPR 时,可达到 8.34 MPa 的突破压力。研究发现,不稳定交联剂的水解导致了 SDRP 的断裂。随着时间的推移,在温度和降解催化剂的共同作用下,不稳定交联剂中的官能团发生了水解。这一过程导致了交联点的破坏,从而使网络结构逐渐恶化。因此,一些不流动的水被转化为自由水。水分子的流动性不断增加,直至堵塞物完全降解为粘稠液体。这项研究丰富了临时堵塞凝胶系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Gels
Gels POLYMER SCIENCE-
CiteScore
4.70
自引率
19.60%
发文量
707
审稿时长
11 weeks
期刊介绍: The journal Gels (ISSN 2310-2861) is an international, open access journal on physical (supramolecular) and chemical gel-based materials. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the maximum length of the papers, and full experimental details must be provided so that the results can be reproduced. Short communications, full research papers and review papers are accepted formats for the preparation of the manuscripts. Gels aims to serve as a reference journal with a focus on gel materials for researchers working in both academia and industry. Therefore, papers demonstrating practical applications of these materials are particularly welcome. Occasionally, invited contributions (i.e., original research and review articles) on emerging issues and high-tech applications of gels are published as special issues.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信