Carlos B P Oliveira, André Carvalho, Renato B Pereira, David M Pereira, Loic Hilliou, Peter J Jervis, José A Martins, Paula M T Ferreira
{"title":"New Supramolecular Hydrogels Based on Diastereomeric Dehydrotripeptide Mixtures for Potential Drug Delivery Applications.","authors":"Carlos B P Oliveira, André Carvalho, Renato B Pereira, David M Pereira, Loic Hilliou, Peter J Jervis, José A Martins, Paula M T Ferreira","doi":"10.3390/gels10100629","DOIUrl":null,"url":null,"abstract":"<p><p>Self-assembly of peptide building blocks offers unique opportunities for bottom-up preparation of exquisite nanostructures, nanoarchitectures, and nanostructured bulk materials, namely hydrogels. In this work we describe the synthesis, characterization, gelation, and rheological properties of new dehydrotripeptides, Cbz-<i>L</i>-Lys(Cbz)-<i>L</i>,<i>D</i>-Asp-∆Phe-OH and (2-Naph)-<i>L</i>-Lys(2-Naph)-<i>L</i>,<i>D</i>-Asp-∆Phe-OH, containing a <i>N</i>-terminal lysine residue <i>N<sub>α</sub></i><sub>,<i>ε</i></sub>-<i>bis</i>-capped with carboxybenzyl (Cbz) and 2-Naphthylacetyl (2-Naph) aromatic moieties, an aspartic acid residue (Asp), and a <i>C</i>-terminal dehydrophenylalanine (∆Phe) residue. The dehydrotripeptides were obtained as diastereomeric mixtures (<i>L</i>,<i>L</i>,<i>Z</i> and <i>L</i>,<i>D</i>,Z), presumably via aspartimide chemistry. The dehydrotripeptides afforded hydrogels at exceedingly low concentrations (0.1 and 0.04 wt%). The hydrogels revealed exceptional elasticity (G' = 5.44 × 10<sup>4</sup> and 3.43 × 10<sup>6</sup> Pa) and self-healing properties. STEM studies showed that the diastereomers of the Cbz-capped peptide undergo <i>co-assembly</i>, generating a fibrillar 3D network, while the diastereomers of the 2-Naph-capped dehydropeptide seem to undergo self-sorting, originating a fibril network with embedded spheroidal nanostructures. The 2-Naph-capped hydrogel displayed full fast recovery following breakup by a mechanical stimulus. Spheroidal nanostructures are absent in the recovered hydrogel, as seen by STEM, suggesting that the mechanical stimulus triggers rearrangement of the spheroidal nanostructures into fibers. Overall, this study demonstrates that diastereomeric mixtures of peptides can be efficacious gelators. Importantly, these results suggest that the structure (size, aromaticity) of the capping group can have a directing effect on the self-assembly (co-assembly vs. self-sorting) of diastereomers. The cytotoxicity of the newly synthesized gelators was evaluated using human keratinocytes (HaCaT cell line). The results indicated that the two gelators exhibited some cytotoxicity, having a small impact on cell viability. In sustained release experiments, the influence of the charge on model drug compounds was assessed in relation to their release rate from the hydrogel matrix. The hydrogels demonstrated sustained release for methyl orange (anionic), while methylene blue (cationic) was retained within the network.</p>","PeriodicalId":12506,"journal":{"name":"Gels","volume":"10 10","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11507963/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gels","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3390/gels10100629","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Self-assembly of peptide building blocks offers unique opportunities for bottom-up preparation of exquisite nanostructures, nanoarchitectures, and nanostructured bulk materials, namely hydrogels. In this work we describe the synthesis, characterization, gelation, and rheological properties of new dehydrotripeptides, Cbz-L-Lys(Cbz)-L,D-Asp-∆Phe-OH and (2-Naph)-L-Lys(2-Naph)-L,D-Asp-∆Phe-OH, containing a N-terminal lysine residue Nα,ε-bis-capped with carboxybenzyl (Cbz) and 2-Naphthylacetyl (2-Naph) aromatic moieties, an aspartic acid residue (Asp), and a C-terminal dehydrophenylalanine (∆Phe) residue. The dehydrotripeptides were obtained as diastereomeric mixtures (L,L,Z and L,D,Z), presumably via aspartimide chemistry. The dehydrotripeptides afforded hydrogels at exceedingly low concentrations (0.1 and 0.04 wt%). The hydrogels revealed exceptional elasticity (G' = 5.44 × 104 and 3.43 × 106 Pa) and self-healing properties. STEM studies showed that the diastereomers of the Cbz-capped peptide undergo co-assembly, generating a fibrillar 3D network, while the diastereomers of the 2-Naph-capped dehydropeptide seem to undergo self-sorting, originating a fibril network with embedded spheroidal nanostructures. The 2-Naph-capped hydrogel displayed full fast recovery following breakup by a mechanical stimulus. Spheroidal nanostructures are absent in the recovered hydrogel, as seen by STEM, suggesting that the mechanical stimulus triggers rearrangement of the spheroidal nanostructures into fibers. Overall, this study demonstrates that diastereomeric mixtures of peptides can be efficacious gelators. Importantly, these results suggest that the structure (size, aromaticity) of the capping group can have a directing effect on the self-assembly (co-assembly vs. self-sorting) of diastereomers. The cytotoxicity of the newly synthesized gelators was evaluated using human keratinocytes (HaCaT cell line). The results indicated that the two gelators exhibited some cytotoxicity, having a small impact on cell viability. In sustained release experiments, the influence of the charge on model drug compounds was assessed in relation to their release rate from the hydrogel matrix. The hydrogels demonstrated sustained release for methyl orange (anionic), while methylene blue (cationic) was retained within the network.
期刊介绍:
The journal Gels (ISSN 2310-2861) is an international, open access journal on physical (supramolecular) and chemical gel-based materials. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the maximum length of the papers, and full experimental details must be provided so that the results can be reproduced. Short communications, full research papers and review papers are accepted formats for the preparation of the manuscripts.
Gels aims to serve as a reference journal with a focus on gel materials for researchers working in both academia and industry. Therefore, papers demonstrating practical applications of these materials are particularly welcome. Occasionally, invited contributions (i.e., original research and review articles) on emerging issues and high-tech applications of gels are published as special issues.