{"title":"Leveraging Deep Learning and Generative AI for Predicting Rheological Properties and Material Compositions of 3D Printed Polyacrylamide Hydrogels.","authors":"Sakib Mohammad, Rafee Akand, Kaden M Cook, Sabrina Nilufar, Farhan Chowdhury","doi":"10.3390/gels10100660","DOIUrl":null,"url":null,"abstract":"<p><p>Artificial intelligence (AI) has the ability to predict rheological properties and constituent composition of 3D-printed materials with appropriately trained models. However, these models are not currently available for use. In this work, we trained deep learning (DL) models to (1) predict the rheological properties, such as the storage (G') and loss (G\") moduli, of 3D-printed polyacrylamide (PAA) substrates, and (2) predict the composition of materials and associated 3D printing parameters for a desired pair of G' and G\". We employed a multilayer perceptron (MLP) and successfully predicted G' and G\" from seven gel constituent parameters in a multivariate regression process. We used a grid-search algorithm along with 10-fold cross validation to tune the hyperparameters of the MLP, and found the R<sup>2</sup> value to be 0.89. Next, we adopted two generative DL models named variational autoencoder (VAE) and conditional variational autoencoder (CVAE) to learn data patterns and generate constituent compositions. With these generative models, we produced synthetic data with the same statistical distribution as the real data of actual hydrogel fabrication, which was then validated using Student's <i>t</i>-test and an autoencoder (AE) anomaly detector. We found that none of the seven generated gel constituents were significantly different from the real data. Our trained DL models were successful in mapping the input-output relationship for the 3D-printed hydrogel substrates, which can predict multiple variables from a handful of input variables and vice versa.</p>","PeriodicalId":12506,"journal":{"name":"Gels","volume":"10 10","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11507415/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gels","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3390/gels10100660","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Artificial intelligence (AI) has the ability to predict rheological properties and constituent composition of 3D-printed materials with appropriately trained models. However, these models are not currently available for use. In this work, we trained deep learning (DL) models to (1) predict the rheological properties, such as the storage (G') and loss (G") moduli, of 3D-printed polyacrylamide (PAA) substrates, and (2) predict the composition of materials and associated 3D printing parameters for a desired pair of G' and G". We employed a multilayer perceptron (MLP) and successfully predicted G' and G" from seven gel constituent parameters in a multivariate regression process. We used a grid-search algorithm along with 10-fold cross validation to tune the hyperparameters of the MLP, and found the R2 value to be 0.89. Next, we adopted two generative DL models named variational autoencoder (VAE) and conditional variational autoencoder (CVAE) to learn data patterns and generate constituent compositions. With these generative models, we produced synthetic data with the same statistical distribution as the real data of actual hydrogel fabrication, which was then validated using Student's t-test and an autoencoder (AE) anomaly detector. We found that none of the seven generated gel constituents were significantly different from the real data. Our trained DL models were successful in mapping the input-output relationship for the 3D-printed hydrogel substrates, which can predict multiple variables from a handful of input variables and vice versa.
期刊介绍:
The journal Gels (ISSN 2310-2861) is an international, open access journal on physical (supramolecular) and chemical gel-based materials. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the maximum length of the papers, and full experimental details must be provided so that the results can be reproduced. Short communications, full research papers and review papers are accepted formats for the preparation of the manuscripts.
Gels aims to serve as a reference journal with a focus on gel materials for researchers working in both academia and industry. Therefore, papers demonstrating practical applications of these materials are particularly welcome. Occasionally, invited contributions (i.e., original research and review articles) on emerging issues and high-tech applications of gels are published as special issues.