Sol-Gel Derived Alumina Particles for the Reinforcement of Copper Films on Brass Substrates.

IF 5 3区 化学 Q1 POLYMER SCIENCE
Gels Pub Date : 2024-10-11 DOI:10.3390/gels10100648
Samah Sasi Maoloud Mohamed, Marija M Vuksanović, Dana G Vasiljević-Radović, Ljiljana Janković Mandić, Radmila M Jančić Heinneman, Aleksandar D Marinković, Ivana O Mladenović
{"title":"Sol-Gel Derived Alumina Particles for the Reinforcement of Copper Films on Brass Substrates.","authors":"Samah Sasi Maoloud Mohamed, Marija M Vuksanović, Dana G Vasiljević-Radović, Ljiljana Janković Mandić, Radmila M Jančić Heinneman, Aleksandar D Marinković, Ivana O Mladenović","doi":"10.3390/gels10100648","DOIUrl":null,"url":null,"abstract":"<p><p>The aim of this study is to provide tailored alumina particles suitable for reinforcing the metal matrix film. The sol-gel method was chosen to prepare particles of submicron size and to control crystal structure by calcination. In this study, copper-based metal matrix composite (MMC) films are developed on brass substrates with different electrodeposition times and alumina concentrations. Scanning electron microscopy (FE-SEM) with energy-dispersive spectroscopy (EDS), TEM, and X-ray diffraction (XRD) were used to characterize the reinforcing phase. The MMC Cu-Al<sub>2</sub>O<sub>3</sub> films were synthesized electrochemically using the co-electrodeposition method. Microstructural and topographical analyses of pure (alumina-free) Cu films and the Cu films with incorporated Al<sub>2</sub>O<sub>3</sub> particles were performed using FE-SEM/EDS and AFM, respectively. Hardness and adhesion resistance were investigated using the Vickers microindentation test and evaluated by applying the Chen-Gao (C-G) mathematical model. The sessile drop method was used for measuring contact angles for water. The microhardness and adhesion of the MMC Cu-Al<sub>2</sub>O<sub>3</sub> films are improved when Al<sub>2</sub>O<sub>3</sub> is added. The concentration of alumina particles in the electrolyte correlates with an increase in absolute film hardness in the way that 1.0 wt.% of alumina in electrolytes results in a 9.96% increase compared to the pure copper film, and the improvement is maximal in the film obtained from electrolytes containing 3.0 wt.% alumina giving the film 2.128 GPa, a 134% hardness value of that of the pure copper film. The surface roughness of the MMC film increased from 2.8 to 6.9 times compared to the Cu film without particles. The decrease in the water contact angle of Cu films with incorporated alumina particles relative to the pure Cu films was from 84.94° to 58.78°.</p>","PeriodicalId":12506,"journal":{"name":"Gels","volume":null,"pages":null},"PeriodicalIF":5.0000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11506922/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gels","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3390/gels10100648","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

The aim of this study is to provide tailored alumina particles suitable for reinforcing the metal matrix film. The sol-gel method was chosen to prepare particles of submicron size and to control crystal structure by calcination. In this study, copper-based metal matrix composite (MMC) films are developed on brass substrates with different electrodeposition times and alumina concentrations. Scanning electron microscopy (FE-SEM) with energy-dispersive spectroscopy (EDS), TEM, and X-ray diffraction (XRD) were used to characterize the reinforcing phase. The MMC Cu-Al2O3 films were synthesized electrochemically using the co-electrodeposition method. Microstructural and topographical analyses of pure (alumina-free) Cu films and the Cu films with incorporated Al2O3 particles were performed using FE-SEM/EDS and AFM, respectively. Hardness and adhesion resistance were investigated using the Vickers microindentation test and evaluated by applying the Chen-Gao (C-G) mathematical model. The sessile drop method was used for measuring contact angles for water. The microhardness and adhesion of the MMC Cu-Al2O3 films are improved when Al2O3 is added. The concentration of alumina particles in the electrolyte correlates with an increase in absolute film hardness in the way that 1.0 wt.% of alumina in electrolytes results in a 9.96% increase compared to the pure copper film, and the improvement is maximal in the film obtained from electrolytes containing 3.0 wt.% alumina giving the film 2.128 GPa, a 134% hardness value of that of the pure copper film. The surface roughness of the MMC film increased from 2.8 to 6.9 times compared to the Cu film without particles. The decrease in the water contact angle of Cu films with incorporated alumina particles relative to the pure Cu films was from 84.94° to 58.78°.

溶胶-凝胶衍生氧化铝颗粒用于黄铜基底铜膜的加固。
本研究的目的是提供适用于强化金属基膜的定制氧化铝颗粒。我们选择了溶胶-凝胶法来制备亚微米级的颗粒,并通过煅烧来控制晶体结构。在这项研究中,铜基金属基复合材料(MMC)薄膜是在黄铜基底上以不同的电沉积时间和氧化铝浓度制备出来的。扫描电子显微镜(FE-SEM)与能量色散光谱(EDS)、TEM 和 X 射线衍射(XRD)被用来表征增强相。MMC Cu-Al2O3 薄膜是采用共电泳方法电化学合成的。使用 FE-SEM/EDS 和原子力显微镜分别对纯(无氧化铝)铜膜和含有 Al2O3 颗粒的铜膜进行了微观结构和形貌分析。使用维氏微压痕测试研究了硬度和抗粘连性,并应用陈-高(C-G)数学模型进行了评估。水接触角的测量采用了无柄液滴法。加入 Al2O3 后,MMC Cu-Al2O3 薄膜的显微硬度和附着力都得到了改善。电解液中氧化铝颗粒的浓度与薄膜绝对硬度的增加有关,电解液中氧化铝含量为 1.0 wt.%时,薄膜硬度比纯铜薄膜增加了 9.96%,而电解液中氧化铝含量为 3.0 wt.%时,薄膜硬度的提高幅度最大,达到 2.128 GPa,是纯铜薄膜硬度值的 134%。与不含颗粒的铜膜相比,MMC 膜的表面粗糙度从 2.8 倍增加到 6.9 倍。与纯铜薄膜相比,含有氧化铝颗粒的铜薄膜的水接触角从 84.94° 减小到 58.78°。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Gels
Gels POLYMER SCIENCE-
CiteScore
4.70
自引率
19.60%
发文量
707
审稿时长
11 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信