Identification and characterisation of 'No apical meristem; Arabidopsis transcription activation factor; Cup-shape cotyledon' (NAC) family transcription factors involved in sugar accumulation and abscisic acid signalling in grape (Vitis vinifera).

IF 2.6 4区 生物学 Q2 PLANT SCIENCES
Shuang Xia, Xinyuan Qi, Jinli Yang, Qiaoyun Deng, Xiuqin Wang
{"title":"Identification and characterisation of 'No apical meristem; <i>Arabidopsis</i> transcription activation factor; Cup-shape cotyledon' (NAC) family transcription factors involved in sugar accumulation and abscisic acid signalling in grape (<i>Vitis vinifera</i>).","authors":"Shuang Xia, Xinyuan Qi, Jinli Yang, Qiaoyun Deng, Xiuqin Wang","doi":"10.1071/FP24207","DOIUrl":null,"url":null,"abstract":"<p><p>The 'No apical meristem; Arabidopsis transcription activation factor; Cup-shape cotyledon' (NAC) transcription factors are pivotal in plant development and stress response. Sucrose-non-fermenting-related protein kinase 1.2 (SnRK1) is a key enzyme in glucose metabolism and ABA signalling. In this study, we used grape (Vitis vinifera ) calli to explore NAC's roles in sugar and ABA pathways and its relationship with VvSnRK1.2 . We identified 19 VvNACs highly expressed at 90days after blooming, coinciding with grape maturity and high sugar accumulation, and 11 VvNACs randomly selected from 19 were demonstrated in response to sugar and ABA treatments. VvNAC26 showed significant response to sugar and ABA treatments, and its protein, as a nucleus protein, had transcriptional activation in yeast. We obtained the overexpression (OE-VvNAC26 ) and RNA-inhibition (RNAi-VvNAC26 ) of VvNAC26 in transgenic calli by Agrobacterium tumefaciens -mediated transformation. We found that VvNAC26 negatively influenced fructose content. Under sugar and ABA treatments, VvNAC26 negatively influenced the expression of most sugar-related genes, while positively influencing the expression of most ABA pathway-related genes. Dual-luciferase reporter experiments demonstrated that VvNAC26 significantly upregulates VvSnRK1.2 promoter expression in tobacco (Nicotiana benthamiana ) leaves, although this process in grape calli requires ABA. The levels of sugar content, sugar-related genes, and ABA-related genes fluctuated significantly in OE-VvNAC26 +RNAi-VvSnRK1.2 and OE-VvSnRK1.2 +RNAi-VvNAC26 transgenic calli. These findings indicated that VvNAC26 regulates sugar metabolism and ABA pathway, displaying synergistic interactions with VvSnRK1.2 .</p>","PeriodicalId":12483,"journal":{"name":"Functional Plant Biology","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Functional Plant Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1071/FP24207","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The 'No apical meristem; Arabidopsis transcription activation factor; Cup-shape cotyledon' (NAC) transcription factors are pivotal in plant development and stress response. Sucrose-non-fermenting-related protein kinase 1.2 (SnRK1) is a key enzyme in glucose metabolism and ABA signalling. In this study, we used grape (Vitis vinifera ) calli to explore NAC's roles in sugar and ABA pathways and its relationship with VvSnRK1.2 . We identified 19 VvNACs highly expressed at 90days after blooming, coinciding with grape maturity and high sugar accumulation, and 11 VvNACs randomly selected from 19 were demonstrated in response to sugar and ABA treatments. VvNAC26 showed significant response to sugar and ABA treatments, and its protein, as a nucleus protein, had transcriptional activation in yeast. We obtained the overexpression (OE-VvNAC26 ) and RNA-inhibition (RNAi-VvNAC26 ) of VvNAC26 in transgenic calli by Agrobacterium tumefaciens -mediated transformation. We found that VvNAC26 negatively influenced fructose content. Under sugar and ABA treatments, VvNAC26 negatively influenced the expression of most sugar-related genes, while positively influencing the expression of most ABA pathway-related genes. Dual-luciferase reporter experiments demonstrated that VvNAC26 significantly upregulates VvSnRK1.2 promoter expression in tobacco (Nicotiana benthamiana ) leaves, although this process in grape calli requires ABA. The levels of sugar content, sugar-related genes, and ABA-related genes fluctuated significantly in OE-VvNAC26 +RNAi-VvSnRK1.2 and OE-VvSnRK1.2 +RNAi-VvNAC26 transgenic calli. These findings indicated that VvNAC26 regulates sugar metabolism and ABA pathway, displaying synergistic interactions with VvSnRK1.2 .

参与葡萄(Vitis vinifera)糖分积累和脱落酸信号传导的 "无顶端分生组织;拟南芥转录激活因子;杯状子叶"(NAC)家族转录因子的鉴定和特征描述。
无顶端分生组织;拟南芥转录激活因子;杯状子叶"(NAC)转录因子在植物发育和胁迫响应中起着关键作用。蔗糖不发酵相关蛋白激酶 1.2(SnRK1)是葡萄糖代谢和 ABA 信号传导的关键酶。在这项研究中,我们利用葡萄(Vitis vinifera)胼胝体来探索 NAC 在糖和 ABA 通路中的作用及其与 VvSnRK1.2 的关系。我们确定了 19 个 VvNACs,它们在葡萄开花后 90 天高度表达,与葡萄成熟和高糖积累相吻合,并从 19 个 VvNACs 中随机选择了 11 个 VvNACs 对糖和 ABA 处理的响应进行了展示。VvNAC26 对糖和 ABA 处理有明显反应,其蛋白作为一种细胞核蛋白,在酵母中具有转录激活作用。我们通过农杆菌介导的转化,在转基因胼胝体中获得了 VvNAC26 的过表达(OE-VvNAC26)和 RNA 抑制(RNAi-VvNAC26)。我们发现 VvNAC26 对果糖含量有负面影响。在糖和 ABA 处理下,VvNAC26 对大多数糖相关基因的表达有负面影响,而对大多数 ABA 途径相关基因的表达有正面影响。双荧光素酶报告实验表明,VvNAC26 能显著上调烟草(Nicotiana benthamiana)叶片中 VvSnRK1.2 启动子的表达,但这一过程在葡萄胼胝体中需要 ABA。在 OE-VvNAC26 +RNAi-VvSnRK1.2 和 OE-VvSnRK1.2 +RNAi-VvNAC26 转基因胼胝体中,糖含量、糖相关基因和 ABA 相关基因的水平波动很大。这些发现表明,VvNAC26 调节糖代谢和 ABA 通路,与 VvSnRK1.2 有协同作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Functional Plant Biology
Functional Plant Biology 生物-植物科学
CiteScore
5.50
自引率
3.30%
发文量
156
审稿时长
1 months
期刊介绍: Functional Plant Biology (formerly known as Australian Journal of Plant Physiology) publishes papers of a broad interest that advance our knowledge on mechanisms by which plants operate and interact with environment. Of specific interest are mechanisms and signal transduction pathways by which plants adapt to extreme environmental conditions such as high and low temperatures, drought, flooding, salinity, pathogens, and other major abiotic and biotic stress factors. FPB also encourages papers on emerging concepts and new tools in plant biology, and studies on the following functional areas encompassing work from the molecular through whole plant to community scale. FPB does not publish merely phenomenological observations or findings of merely applied significance. Functional Plant Biology is published with the endorsement of the Commonwealth Scientific and Industrial Research Organisation (CSIRO) and the Australian Academy of Science. Functional Plant Biology is published in affiliation with the Federation of European Societies of Plant Biology and in Australia, is associated with the Australian Society of Plant Scientists and the New Zealand Society of Plant Biologists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信