A metagenomic approach to demystify the anaerobic digestion black box and achieve higher biogas yield: a review.

IF 4 2区 生物学 Q2 MICROBIOLOGY
Frontiers in Microbiology Pub Date : 2024-10-11 eCollection Date: 2024-01-01 DOI:10.3389/fmicb.2024.1437098
Iván Ostos, Luz Marina Flórez-Pardo, Carolina Camargo
{"title":"A metagenomic approach to demystify the anaerobic digestion black box and achieve higher biogas yield: a review.","authors":"Iván Ostos, Luz Marina Flórez-Pardo, Carolina Camargo","doi":"10.3389/fmicb.2024.1437098","DOIUrl":null,"url":null,"abstract":"<p><p>The increasing reliance on fossil fuels and the growing accumulation of organic waste necessitates the exploration of sustainable energy alternatives. Anaerobic digestion (AD) presents one such solution by utilizing secondary biomass to produce biogas while reducing greenhouse gas emissions. Given the crucial role of microbial activity in anaerobic digestion, a deeper understanding of the microbial community is essential for optimizing biogas production. While metagenomics has emerged as a valuable tool for unravelling microbial composition and providing insights into the functional potential in biodigestion, it falls short of interpreting the functional and metabolic interactions, limiting a comprehensive understanding of individual roles in the community. This emphasizes the significance of expanding the scope of metagenomics through innovative tools that highlight the often-overlooked, yet crucial, role of microbiota in biomass digestion. These tools can more accurately elucidate microbial ecological fitness, shared metabolic pathways, and interspecies interactions. By addressing current limitations and integrating metagenomics with other omics approaches, more accurate predictive techniques can be developed, facilitating informed decision-making to optimize AD processes and enhance biogas yields, thereby contributing to a more sustainable future.</p>","PeriodicalId":12466,"journal":{"name":"Frontiers in Microbiology","volume":null,"pages":null},"PeriodicalIF":4.0000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11502389/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3389/fmicb.2024.1437098","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The increasing reliance on fossil fuels and the growing accumulation of organic waste necessitates the exploration of sustainable energy alternatives. Anaerobic digestion (AD) presents one such solution by utilizing secondary biomass to produce biogas while reducing greenhouse gas emissions. Given the crucial role of microbial activity in anaerobic digestion, a deeper understanding of the microbial community is essential for optimizing biogas production. While metagenomics has emerged as a valuable tool for unravelling microbial composition and providing insights into the functional potential in biodigestion, it falls short of interpreting the functional and metabolic interactions, limiting a comprehensive understanding of individual roles in the community. This emphasizes the significance of expanding the scope of metagenomics through innovative tools that highlight the often-overlooked, yet crucial, role of microbiota in biomass digestion. These tools can more accurately elucidate microbial ecological fitness, shared metabolic pathways, and interspecies interactions. By addressing current limitations and integrating metagenomics with other omics approaches, more accurate predictive techniques can be developed, facilitating informed decision-making to optimize AD processes and enhance biogas yields, thereby contributing to a more sustainable future.

元基因组学方法揭开厌氧消化黑箱的神秘面纱,实现更高的沼气产量:综述。
由于对化石燃料的依赖越来越大,有机废物的积累也越来越多,因此有必要探索可持续的能源替代品。厌氧消化(AD)就是这样一种解决方案,它利用二次生物质生产沼气,同时减少温室气体排放。鉴于微生物活动在厌氧消化中的关键作用,深入了解微生物群落对于优化沼气生产至关重要。虽然元基因组学已成为揭示微生物组成和深入了解生物消化功能潜力的重要工具,但它无法解释功能和代谢的相互作用,限制了对群落中个体作用的全面了解。这就强调了通过创新工具扩大元基因组学范围的重要性,这些工具可以突出微生物群在生物质消化过程中经常被忽视但却至关重要的作用。这些工具可以更准确地阐明微生物的生态适应性、共享代谢途径和种间相互作用。通过解决目前的局限性,并将元基因组学与其他全息方法相结合,可以开发出更准确的预测技术,从而为优化厌氧消化(AD)过程和提高沼气产量做出明智的决策,从而为更可持续的未来做出贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.70
自引率
9.60%
发文量
4837
审稿时长
14 weeks
期刊介绍: Frontiers in Microbiology is a leading journal in its field, publishing rigorously peer-reviewed research across the entire spectrum of microbiology. Field Chief Editor Martin G. Klotz at Washington State University is supported by an outstanding Editorial Board of international researchers. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics, clinicians and the public worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信