{"title":"Evaluation of immune sensor responses to a viral small noncoding RNA.","authors":"Mehmet Kara, Scott A Tibbetts","doi":"10.3389/fcimb.2024.1459256","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Gammaherpesviruses are widespread pathogens causing persistent infections linked to the development of numerous types of lymphomas in humans. During latency, most of the viral protein-coding genes are suppressed, facilitating evasion of adaptive immune recognition of protein antigens. In contrast, many noncoding RNA (ncRNA) molecules are expressed in infected cells and can regulate key cellular pathways while simultaneously evading adaptive immune recognition. To counteract this, many cells express internal pattern recognition receptors that can intrinsically sense ongoing infections and initiate cellular defenses. Murine gammaherpesvirus 68 (MHV68) is a valuable model to study <i>in vivo</i> aspects of gammaherpesvirus pathogenesis. The MHV68 ncRNA TMER4 (tRNA-miRNA-encoding RNA 4) promotes lymph node egress of infected B cells: in the absence of TMER4, MHV68-infected B cells accumulate in the lymph node in a manner similar to B cells activated through specific antigen encounter.</p><p><strong>Method: </strong>We hypothesized that TMER4 may alter intrinsic immune activation. In research described here, we aimed to explore the immunomodulatory functions of TMER4 by evaluating its impact on signaling through the critical immune sensors Toll-like receptor 4 (TLR4), TLR3, TLR7, and retinoic acid-inducible gene I (RIG-I). To accomplish this, we developed a system to test noncoding RNAs using commercially available reporter cell lines. We optimized the experimental procedure to ensure ncRNA expression and to quantify immune sensory molecule induction or inhibition by the expressed ncRNA.</p><p><strong>Results and discussion: </strong>Expression of TMER4 RNAs from plasmid constructs did not alter TLR or RIG-I signaling. This study provides a clear experimental framework that can be applied to test other small ncRNAs for their impact on various innate immune sensor proteins.</p>","PeriodicalId":12458,"journal":{"name":"Frontiers in Cellular and Infection Microbiology","volume":"14 ","pages":"1459256"},"PeriodicalIF":4.6000,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11499242/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Cellular and Infection Microbiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fcimb.2024.1459256","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: Gammaherpesviruses are widespread pathogens causing persistent infections linked to the development of numerous types of lymphomas in humans. During latency, most of the viral protein-coding genes are suppressed, facilitating evasion of adaptive immune recognition of protein antigens. In contrast, many noncoding RNA (ncRNA) molecules are expressed in infected cells and can regulate key cellular pathways while simultaneously evading adaptive immune recognition. To counteract this, many cells express internal pattern recognition receptors that can intrinsically sense ongoing infections and initiate cellular defenses. Murine gammaherpesvirus 68 (MHV68) is a valuable model to study in vivo aspects of gammaherpesvirus pathogenesis. The MHV68 ncRNA TMER4 (tRNA-miRNA-encoding RNA 4) promotes lymph node egress of infected B cells: in the absence of TMER4, MHV68-infected B cells accumulate in the lymph node in a manner similar to B cells activated through specific antigen encounter.
Method: We hypothesized that TMER4 may alter intrinsic immune activation. In research described here, we aimed to explore the immunomodulatory functions of TMER4 by evaluating its impact on signaling through the critical immune sensors Toll-like receptor 4 (TLR4), TLR3, TLR7, and retinoic acid-inducible gene I (RIG-I). To accomplish this, we developed a system to test noncoding RNAs using commercially available reporter cell lines. We optimized the experimental procedure to ensure ncRNA expression and to quantify immune sensory molecule induction or inhibition by the expressed ncRNA.
Results and discussion: Expression of TMER4 RNAs from plasmid constructs did not alter TLR or RIG-I signaling. This study provides a clear experimental framework that can be applied to test other small ncRNAs for their impact on various innate immune sensor proteins.
期刊介绍:
Frontiers in Cellular and Infection Microbiology is a leading specialty journal, publishing rigorously peer-reviewed research across all pathogenic microorganisms and their interaction with their hosts. Chief Editor Yousef Abu Kwaik, University of Louisville is supported by an outstanding Editorial Board of international experts. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics, clinicians and the public worldwide.
Frontiers in Cellular and Infection Microbiology includes research on bacteria, fungi, parasites, viruses, endosymbionts, prions and all microbial pathogens as well as the microbiota and its effect on health and disease in various hosts. The research approaches include molecular microbiology, cellular microbiology, gene regulation, proteomics, signal transduction, pathogenic evolution, genomics, structural biology, and virulence factors as well as model hosts. Areas of research to counteract infectious agents by the host include the host innate and adaptive immune responses as well as metabolic restrictions to various pathogenic microorganisms, vaccine design and development against various pathogenic microorganisms, and the mechanisms of antibiotic resistance and its countermeasures.