Bauyrzhan Iztayev, Auyelbek Iztayev, Talgat Kulazhanov, Galiya Iskakova, Madina Yakiyayeva, Bayan Muldabekova, Meruyet Baiysbayeva, Sholpan Tursunbayeva
{"title":"A Study of the Influence of Ion-Ozonized Water on the Properties of Pasta Dough Made from Wheat Flour and Pumpkin Powder.","authors":"Bauyrzhan Iztayev, Auyelbek Iztayev, Talgat Kulazhanov, Galiya Iskakova, Madina Yakiyayeva, Bayan Muldabekova, Meruyet Baiysbayeva, Sholpan Tursunbayeva","doi":"10.3390/foods13203253","DOIUrl":null,"url":null,"abstract":"<p><p>Water treated with ion ozone improves the technological qualities of food products. Therefore, ion-ozonated water was used in the work, and whole-grain flour from soft wheat of the Almaly variety and pumpkin powder were used as raw materials to improve the quality and nutritional value of the pasta. This study investigated the effects of ion-ozone concentration in ion-ozonated water C<sub>io</sub>, water temperature t<sub>w</sub>, pumpkin powder content C<sub>pp</sub> and drying temperature t<sub>d</sub> on various characteristics affecting the quality of pasta, including its organoleptic physical, chemical, and rheological properties. These characteristics were assessed by conducting multiple experiments, a total of 25 indicators were determined, such as humidity, acidity, cooking properties, deformation, and other basic quality indicators. To reduce the number of experiments and obtain a reliable assessment of the influence of individual factors on the quality indicators of pasta, methods involving the multifactorial design of experiments were applied. Data processing and all necessary calculations were carried out using the PLAN sequential regression analysis program. Consequently, our findings indicate that minimizing dry water (DM) loss in cooking water requires a dual approach: increasing ion-ozone concentration and optimizing pasta composition and drying conditions, specifically by reducing pumpkin powder content and drying temperature. As a result, it was established that to obtain high-quality pasta from whole-grain flour with high quality and rheological properties, it is necessary to use the following optimal production modes: ion-ozone concentration in ion-ozonated water C<sub>io</sub> = 2.5 × 10<sup>-6</sup> mg/cm<sup>3</sup>, water temperature t<sub>w</sub> = 50 °C, pumpkin powder content C<sub>pp</sub> = 3.0%, and pasta drying temperature t<sub>d</sub> = 50 °C. The resulting pasta is an environmentally friendly product with a high content of biologically active substances.</p>","PeriodicalId":12386,"journal":{"name":"Foods","volume":null,"pages":null},"PeriodicalIF":4.7000,"publicationDate":"2024-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11507638/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Foods","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.3390/foods13203253","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Water treated with ion ozone improves the technological qualities of food products. Therefore, ion-ozonated water was used in the work, and whole-grain flour from soft wheat of the Almaly variety and pumpkin powder were used as raw materials to improve the quality and nutritional value of the pasta. This study investigated the effects of ion-ozone concentration in ion-ozonated water Cio, water temperature tw, pumpkin powder content Cpp and drying temperature td on various characteristics affecting the quality of pasta, including its organoleptic physical, chemical, and rheological properties. These characteristics were assessed by conducting multiple experiments, a total of 25 indicators were determined, such as humidity, acidity, cooking properties, deformation, and other basic quality indicators. To reduce the number of experiments and obtain a reliable assessment of the influence of individual factors on the quality indicators of pasta, methods involving the multifactorial design of experiments were applied. Data processing and all necessary calculations were carried out using the PLAN sequential regression analysis program. Consequently, our findings indicate that minimizing dry water (DM) loss in cooking water requires a dual approach: increasing ion-ozone concentration and optimizing pasta composition and drying conditions, specifically by reducing pumpkin powder content and drying temperature. As a result, it was established that to obtain high-quality pasta from whole-grain flour with high quality and rheological properties, it is necessary to use the following optimal production modes: ion-ozone concentration in ion-ozonated water Cio = 2.5 × 10-6 mg/cm3, water temperature tw = 50 °C, pumpkin powder content Cpp = 3.0%, and pasta drying temperature td = 50 °C. The resulting pasta is an environmentally friendly product with a high content of biologically active substances.
期刊介绍:
Foods (ISSN 2304-8158) is an international, peer-reviewed scientific open access journal which provides an advanced forum for studies related to all aspects of food research. It publishes reviews, regular research papers and short communications. Our aim is to encourage scientists, researchers, and other food professionals to publish their experimental and theoretical results in as much detail as possible or share their knowledge with as much readers unlimitedly as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, unique features of this journal:
manuscripts regarding research proposals and research ideas will be particularly welcomed
electronic files or software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material
we also accept manuscripts communicating to a broader audience with regard to research projects financed with public funds