{"title":"Charge reversible hyaluronic acid-based drug delivery system with pH-responsive dissociation for enhanced drug delivery","authors":"","doi":"10.1016/j.ejpb.2024.114560","DOIUrl":null,"url":null,"abstract":"<div><div>Improving the efficiency of drug delivery is one of the most important goals in the field of drug delivery. One strategy for drug delivery efficiency is to make the drug delivery system capable of charge reversal. In this study, we used hyaluronic acid (HA) as the skeleton to anchor dimethylmaleic anhydride-modified polylysine (PLL-DMMA) and N-(3-Aminopropyl)-imidazole (IMI) to construct a pH-sensitive (IMI/Zn<sup>2+</sup>)-HA-PLL-DMMA system via Zn coordination. The (IMI/Zn<sup>2+</sup>)-HA-PLL-DMMA system can detach DMMA moieties and expose PLL with a positive charge in the acidic tumor microenvironment (TME), which enhances cellular uptake in cancer cells through charge reversal. Once the drug-loaded (IMI/Zn<sup>2+</sup>)-HA-PLL-DMMA enters cancer cells, it specifically responds and disassembles in the acidic TME, resulting in drug release and inhibition of cancer cell viability. The (IMI/Zn<sup>2+</sup>)-HA-PLL-DMMA system is designed to regulate drug release behavior with Zn<sup>2+</sup> and IMI groups as control units. The HA-based system shows synergistic selective drug delivery in suppressing tumor cells and has potential in cancer therapy.</div></div>","PeriodicalId":12024,"journal":{"name":"European Journal of Pharmaceutics and Biopharmaceutics","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Pharmaceutics and Biopharmaceutics","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0939641124003862","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Improving the efficiency of drug delivery is one of the most important goals in the field of drug delivery. One strategy for drug delivery efficiency is to make the drug delivery system capable of charge reversal. In this study, we used hyaluronic acid (HA) as the skeleton to anchor dimethylmaleic anhydride-modified polylysine (PLL-DMMA) and N-(3-Aminopropyl)-imidazole (IMI) to construct a pH-sensitive (IMI/Zn2+)-HA-PLL-DMMA system via Zn coordination. The (IMI/Zn2+)-HA-PLL-DMMA system can detach DMMA moieties and expose PLL with a positive charge in the acidic tumor microenvironment (TME), which enhances cellular uptake in cancer cells through charge reversal. Once the drug-loaded (IMI/Zn2+)-HA-PLL-DMMA enters cancer cells, it specifically responds and disassembles in the acidic TME, resulting in drug release and inhibition of cancer cell viability. The (IMI/Zn2+)-HA-PLL-DMMA system is designed to regulate drug release behavior with Zn2+ and IMI groups as control units. The HA-based system shows synergistic selective drug delivery in suppressing tumor cells and has potential in cancer therapy.
期刊介绍:
The European Journal of Pharmaceutics and Biopharmaceutics provides a medium for the publication of novel, innovative and hypothesis-driven research from the areas of Pharmaceutics and Biopharmaceutics.
Topics covered include for example:
Design and development of drug delivery systems for pharmaceuticals and biopharmaceuticals (small molecules, proteins, nucleic acids)
Aspects of manufacturing process design
Biomedical aspects of drug product design
Strategies and formulations for controlled drug transport across biological barriers
Physicochemical aspects of drug product development
Novel excipients for drug product design
Drug delivery and controlled release systems for systemic and local applications
Nanomaterials for therapeutic and diagnostic purposes
Advanced therapy medicinal products
Medical devices supporting a distinct pharmacological effect.