Molly C Mulcahy, Noura El Habbal, JeAnna R Redd, Haijing Sun, Brigid E Gregg, Dave Bridges
{"title":"GDF15 Knockout Does Not Substantially Impact Perinatal Body Weight or Neonatal Outcomes in Mice.","authors":"Molly C Mulcahy, Noura El Habbal, JeAnna R Redd, Haijing Sun, Brigid E Gregg, Dave Bridges","doi":"10.1210/endocr/bqae143","DOIUrl":null,"url":null,"abstract":"<p><p>Growth differentiation factor-15 (GDF15) increases in circulation during pregnancy and has been implicated in food intake, weight loss, complications of pregnancy, and metabolic illness. We used a Gdf15 knockout mouse model (Gdf15-/-) to assess the role of GDF15 in body weight regulation and food intake during pregnancy. We found that Gdf15-/- dams consumed a similar amount of food and gained comparable weight during the course of pregnancy compared with Gdf15+/+ dams. Insulin sensitivity on gestational day 16.5 was also similar between genotypes. In the postnatal period, litter size and survival rates were similar between genotypes. There was a modest reduction in birth weight of Gdf15-/- pups, but this difference was no longer evident from postnatal day 3.5 to 14.5. We observed no detectable differences in milk volume production or milk fat percentage. These data suggest that GDF15 is dispensable for changes in food intake, and body weight as well as insulin sensitivity during pregnancy in a mouse model.</p>","PeriodicalId":11819,"journal":{"name":"Endocrinology","volume":" ","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11577612/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Endocrinology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1210/endocr/bqae143","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0
Abstract
Growth differentiation factor-15 (GDF15) increases in circulation during pregnancy and has been implicated in food intake, weight loss, complications of pregnancy, and metabolic illness. We used a Gdf15 knockout mouse model (Gdf15-/-) to assess the role of GDF15 in body weight regulation and food intake during pregnancy. We found that Gdf15-/- dams consumed a similar amount of food and gained comparable weight during the course of pregnancy compared with Gdf15+/+ dams. Insulin sensitivity on gestational day 16.5 was also similar between genotypes. In the postnatal period, litter size and survival rates were similar between genotypes. There was a modest reduction in birth weight of Gdf15-/- pups, but this difference was no longer evident from postnatal day 3.5 to 14.5. We observed no detectable differences in milk volume production or milk fat percentage. These data suggest that GDF15 is dispensable for changes in food intake, and body weight as well as insulin sensitivity during pregnancy in a mouse model.
期刊介绍:
The mission of Endocrinology is to be the authoritative source of emerging hormone science and to disseminate that new knowledge to scientists, clinicians, and the public in a way that will enable "hormone science to health." Endocrinology welcomes the submission of original research investigating endocrine systems and diseases at all levels of biological organization, incorporating molecular mechanistic studies, such as hormone-receptor interactions, in all areas of endocrinology, as well as cross-disciplinary and integrative studies. The editors of Endocrinology encourage the submission of research in emerging areas not traditionally recognized as endocrinology or metabolism in addition to the following traditionally recognized fields: Adrenal; Bone Health and Osteoporosis; Cardiovascular Endocrinology; Diabetes; Endocrine-Disrupting Chemicals; Endocrine Neoplasia and Cancer; Growth; Neuroendocrinology; Nuclear Receptors and Their Ligands; Obesity; Reproductive Endocrinology; Signaling Pathways; and Thyroid.