Modeling the Current and Future Distribution of Indianthus virgatus (Roxb.) Suksathan & Borchs.: A Monotypic Plant Endemic to the Western Ghats-Sri Lanka Biodiversity Hotspot

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Shreekara Bhat Vishnu, Vivek Pandi, Indrakheela Madola, Bhathiya Gopallawa, Gija Anna Abraham, Rajendiran Gayathri, Deepthi Yakandawala, Annamalai Muthusamy
{"title":"Modeling the Current and Future Distribution of Indianthus virgatus (Roxb.) Suksathan & Borchs.: A Monotypic Plant Endemic to the Western Ghats-Sri Lanka Biodiversity Hotspot","authors":"Shreekara Bhat Vishnu,&nbsp;Vivek Pandi,&nbsp;Indrakheela Madola,&nbsp;Bhathiya Gopallawa,&nbsp;Gija Anna Abraham,&nbsp;Rajendiran Gayathri,&nbsp;Deepthi Yakandawala,&nbsp;Annamalai Muthusamy","doi":"10.1002/ece3.70489","DOIUrl":null,"url":null,"abstract":"<p>Species distribution modeling (SDM) is an essential tool in ecology and conservation for predicting species distributions based on species presence/absence data and environmental variables. The present study aimed to understand the distribution pattern and habitat suitability of <i>Indianthus virgatus</i> under current and future climate change scenarios (2050 and 2070) using <i>MaxEnt (3.4.4)</i> and <i>Wallace Ecological Modeling (v2.1.2)</i> tools. The study also intended to identify key environmental predictors of <i>I. virgatus'</i> distribution. Species occurrence data were collected from various sources, including herbarium (online and physical), field surveys, and online databases, yielding 105 unique locations in the Western Ghats (WG) of India and Sri Lanka. We used 19 bioclimatic variables and elevation data sourced from WorldClim for modeling. The <i>MaxEnt</i> and <i>Wallace</i> models showed excellent performance in predicting the distribution of <i>I. virgatus</i>, with area under the curve values of 0.958 (± 0.002) and 0.93, respectively. In <i>MaxEnt</i> modeling, Temperature Seasonality (bio4) was the most significant environmental parameter, followed by the Precipitation of the Coldest Quarter (bio19). In contrast, the Annual Mean Temperature (bio1), Temperature Seasonality (bio4), and Annual Precipitation (bio12) were among the key contributors in <i>Wallace EcoMod</i>. Both the models predicted relatively lesser areas in the species' distribution range as highly suitable habitats (HSH) in India and Sri Lanka. We found divergent trends in predicting <i>I. virgatus</i> distributions using <i>MaxEnt</i> and <i>Wallace EcoMod</i>, particularly for future projections. Nevertheless, both models predicted significant habitat loss under future climate change scenarios, especially under RCP85, with varying degrees of suitability across India and Sri Lanka. Overall, our findings on expected habitat loss under future climate change scenarios highlight the importance of conserving <i>I. virgatus</i>, which has already been declared critically endangered (CR) in Sri Lanka.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11512157/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ece3.70489","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

Species distribution modeling (SDM) is an essential tool in ecology and conservation for predicting species distributions based on species presence/absence data and environmental variables. The present study aimed to understand the distribution pattern and habitat suitability of Indianthus virgatus under current and future climate change scenarios (2050 and 2070) using MaxEnt (3.4.4) and Wallace Ecological Modeling (v2.1.2) tools. The study also intended to identify key environmental predictors of I. virgatus' distribution. Species occurrence data were collected from various sources, including herbarium (online and physical), field surveys, and online databases, yielding 105 unique locations in the Western Ghats (WG) of India and Sri Lanka. We used 19 bioclimatic variables and elevation data sourced from WorldClim for modeling. The MaxEnt and Wallace models showed excellent performance in predicting the distribution of I. virgatus, with area under the curve values of 0.958 (± 0.002) and 0.93, respectively. In MaxEnt modeling, Temperature Seasonality (bio4) was the most significant environmental parameter, followed by the Precipitation of the Coldest Quarter (bio19). In contrast, the Annual Mean Temperature (bio1), Temperature Seasonality (bio4), and Annual Precipitation (bio12) were among the key contributors in Wallace EcoMod. Both the models predicted relatively lesser areas in the species' distribution range as highly suitable habitats (HSH) in India and Sri Lanka. We found divergent trends in predicting I. virgatus distributions using MaxEnt and Wallace EcoMod, particularly for future projections. Nevertheless, both models predicted significant habitat loss under future climate change scenarios, especially under RCP85, with varying degrees of suitability across India and Sri Lanka. Overall, our findings on expected habitat loss under future climate change scenarios highlight the importance of conserving I. virgatus, which has already been declared critically endangered (CR) in Sri Lanka.

Abstract Image

印度桂(Indianthus virgatus (Roxb.) Suksathan & Borchs.)当前和未来分布建模:西高止山脉-斯里兰卡生物多样性热点地区特有的单型植物。
物种分布建模(SDM)是生态学和保护领域的一项重要工具,用于根据物种存在/消失数据和环境变量预测物种分布。本研究旨在利用 MaxEnt(3.4.4)和 Wallace Ecological Modeling(v2.1.2)工具,了解在当前和未来气候变化情景(2050 年和 2070 年)下印度桂(Indianthus virgatus)的分布模式和栖息地适宜性。该研究还旨在确定影响 I. virgatus 分布的关键环境预测因素。物种出现数据收集自各种来源,包括标本馆(在线和实物)、实地调查和在线数据库,共收集到印度和斯里兰卡西高止山脉(WG)的 105 个独特地点。我们使用来自 WorldClim 的 19 个生物气候变量和海拔数据进行建模。MaxEnt 模型和 Wallace 模型在预测 I. virgatus 的分布方面表现出色,曲线下面积值分别为 0.958(± 0.002)和 0.93。在 MaxEnt 模型中,温度季节性(bio4)是最重要的环境参数,其次是最冷季度降水量(bio19)。相比之下,年平均气温(bio1)、气温季节性(bio4)和年降水量(bio12)则是华莱士生态模型的主要影响因素。这两种模式都预测印度和斯里兰卡的物种分布区中较少区域为高度适宜栖息地(HSH)。我们发现,使用 MaxEnt 和 Wallace EcoMod 预测 I. virgatus 分布的趋势存在差异,尤其是对未来的预测。尽管如此,两种模型都预测在未来气候变化情景下,尤其是在 RCP85 情景下,印度和斯里兰卡的栖息地将大量减少,而且适宜程度各不相同。总之,我们对未来气候变化情景下预计栖息地丧失的研究结果突出表明了保护斯里兰卡已被宣布为极度濒危物种(CR)的 I. virgatus 的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信