{"title":"Development of FK506-loaded maleimide-functionalized cationic niosomes for prolonged retention and therapeutic efficacy in dry eye disease.","authors":"Zhixin Guo, Yutong Song, Zhihong Liu, Jiansheng Dai, Zhenzhen Chen, Xianquan Feng, Wenhao Gao, Lingjun Zeng, Hongtao Song","doi":"10.1007/s13346-024-01726-3","DOIUrl":null,"url":null,"abstract":"<p><p>Tacrolimus (FK506) is widely used in ocular diseases such as corneal transplantation-host disease, uveitis, conjunctivitis, and dry eye disease (DED). However, its low aqueous solubility and poor ocular retention pose challenges for its application in the eye diseases. This study developed a novel FK506-loaded maleimide-functionalized cationic niosomes (FK506 M-CNS), aiming to prolong the retention time of FK506 in the eye and enhance its therapeutic efficacy. FK506 M-CNS had a particle size of 87.69 ± 1.05 nm and zeta potential of 22.06 ± 1.01 mV. Results of histological evaluation through H&E staining and in vitro cytotoxicity of human corneal epithelial cells consistently revealed the excellent biocompatibility of FK506 M-CNS. FK506 M-CNS exhibited superior ocular retention compared to the market product Talymus<sup>®</sup>. FK506 M-CNS significantly alleviated the symptoms of DED and promoted the recovery of corneal epithelia. FK506 M-CNS group had the lowest expression levels of inflammatory factors associated with DED. These superiorities might be due to the electrostatic interaction between cationic niosomes and negatively charged mucin in the eye, and the covalent binding of maleimide with the thiol group in the mucin. The maleimide group improved the ocular retention and efficacy of FK506, but did not increase the toxicity. Results indicated that FK506 M-CNS had great potential as a nanopharmaceutical in the treatment of ocular diseases, and M-CNS could be a promising drug carrier for ophthalmic drug delivery systems.</p>","PeriodicalId":11357,"journal":{"name":"Drug Delivery and Translational Research","volume":" ","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Delivery and Translational Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s13346-024-01726-3","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Tacrolimus (FK506) is widely used in ocular diseases such as corneal transplantation-host disease, uveitis, conjunctivitis, and dry eye disease (DED). However, its low aqueous solubility and poor ocular retention pose challenges for its application in the eye diseases. This study developed a novel FK506-loaded maleimide-functionalized cationic niosomes (FK506 M-CNS), aiming to prolong the retention time of FK506 in the eye and enhance its therapeutic efficacy. FK506 M-CNS had a particle size of 87.69 ± 1.05 nm and zeta potential of 22.06 ± 1.01 mV. Results of histological evaluation through H&E staining and in vitro cytotoxicity of human corneal epithelial cells consistently revealed the excellent biocompatibility of FK506 M-CNS. FK506 M-CNS exhibited superior ocular retention compared to the market product Talymus®. FK506 M-CNS significantly alleviated the symptoms of DED and promoted the recovery of corneal epithelia. FK506 M-CNS group had the lowest expression levels of inflammatory factors associated with DED. These superiorities might be due to the electrostatic interaction between cationic niosomes and negatively charged mucin in the eye, and the covalent binding of maleimide with the thiol group in the mucin. The maleimide group improved the ocular retention and efficacy of FK506, but did not increase the toxicity. Results indicated that FK506 M-CNS had great potential as a nanopharmaceutical in the treatment of ocular diseases, and M-CNS could be a promising drug carrier for ophthalmic drug delivery systems.
期刊介绍:
The journal provides a unique forum for scientific publication of high-quality research that is exclusively focused on translational aspects of drug delivery. Rationally developed, effective delivery systems can potentially affect clinical outcome in different disease conditions.
Research focused on the following areas of translational drug delivery research will be considered for publication in the journal.
Designing and developing novel drug delivery systems, with a focus on their application to disease conditions;
Preclinical and clinical data related to drug delivery systems;
Drug distribution, pharmacokinetics, clearance, with drug delivery systems as compared to traditional dosing to demonstrate beneficial outcomes
Short-term and long-term biocompatibility of drug delivery systems, host response;
Biomaterials with growth factors for stem-cell differentiation in regenerative medicine and tissue engineering;
Image-guided drug therapy,
Nanomedicine;
Devices for drug delivery and drug/device combination products.
In addition to original full-length papers, communications, and reviews, the journal includes editorials, reports of future meetings, research highlights, and announcements pertaining to the activities of the Controlled Release Society.