Conghui Wang, Dan Zhang, Shi Yue, Shaofeng Jia, Hao Li, Wanxin Liu, Le Li
{"title":"Organic Electrolyte Additives for Aqueous Zinc Ion Batteries: Progress and Outlook","authors":"Conghui Wang, Dan Zhang, Shi Yue, Shaofeng Jia, Hao Li, Wanxin Liu, Le Li","doi":"10.1002/tcr.202400142","DOIUrl":null,"url":null,"abstract":"<p>Aqueous zinc ion batteries (AZIBs) are considered one of the most prospective new-generation electrochemical energy storage devices with the advantages of high specific capacity, good safety, and high economic efficiency. Nevertheless, the enduring problems of low Coulombic efficiency (CE) and inadequate cycling stability of zinc anodes, originating from dendrites, hydrogen precipitation and passivation, are closely tied to their thermodynamic instability in aqueous electrolytes, which significantly shortens the cycle life of the battery. Electrolyte additives can solve the above difficulties and are important for the advancement of affordable and reliable AZIBs. Organic electrolyte additives have attracted widespread attention due to their unique properties, however, there is a lack of systematic discussion on the performance and mechanism of action of organic electrolyte additives. In this review, a comprehensive overview of the application of organic electrolyte additives in AZIBs is presented. The role of organic electrolyte additives in stabilizing zinc anodes is described and evaluated. Finally, further potential directions and prospects for improving and directing organic electrolyte additives for AZIBs are presented.</p>","PeriodicalId":10046,"journal":{"name":"Chemical record","volume":"24 12","pages":""},"PeriodicalIF":7.0000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical record","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/tcr.202400142","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Aqueous zinc ion batteries (AZIBs) are considered one of the most prospective new-generation electrochemical energy storage devices with the advantages of high specific capacity, good safety, and high economic efficiency. Nevertheless, the enduring problems of low Coulombic efficiency (CE) and inadequate cycling stability of zinc anodes, originating from dendrites, hydrogen precipitation and passivation, are closely tied to their thermodynamic instability in aqueous electrolytes, which significantly shortens the cycle life of the battery. Electrolyte additives can solve the above difficulties and are important for the advancement of affordable and reliable AZIBs. Organic electrolyte additives have attracted widespread attention due to their unique properties, however, there is a lack of systematic discussion on the performance and mechanism of action of organic electrolyte additives. In this review, a comprehensive overview of the application of organic electrolyte additives in AZIBs is presented. The role of organic electrolyte additives in stabilizing zinc anodes is described and evaluated. Finally, further potential directions and prospects for improving and directing organic electrolyte additives for AZIBs are presented.
期刊介绍:
The Chemical Record (TCR) is a "highlights" journal publishing timely and critical overviews of new developments at the cutting edge of chemistry of interest to a wide audience of chemists (2013 journal impact factor: 5.577). The scope of published reviews includes all areas related to physical chemistry, analytical chemistry, inorganic chemistry, organic chemistry, polymer chemistry, materials chemistry, bioorganic chemistry, biochemistry, biotechnology and medicinal chemistry as well as interdisciplinary fields.
TCR provides carefully selected highlight papers by leading researchers that introduce the author''s own experimental and theoretical results in a framework designed to establish perspectives with earlier and contemporary work and provide a critical review of the present state of the subject. The articles are intended to present concise evaluations of current trends in chemistry research to help chemists gain useful insights into fields outside their specialization and provide experts with summaries of recent key developments.