TECRR: a benchmark dataset of radiological reports for BI-RADS classification with machine learning, deep learning, and large language model baselines.

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Sadam Hussain, Usman Naseem, Mansoor Ali, Daly Betzabeth Avendaño Avalos, Servando Cardona-Huerta, Beatriz Alejandra Bosques Palomo, Jose Gerardo Tamez-Peña
{"title":"TECRR: a benchmark dataset of radiological reports for BI-RADS classification with machine learning, deep learning, and large language model baselines.","authors":"Sadam Hussain, Usman Naseem, Mansoor Ali, Daly Betzabeth Avendaño Avalos, Servando Cardona-Huerta, Beatriz Alejandra Bosques Palomo, Jose Gerardo Tamez-Peña","doi":"10.1186/s12911-024-02717-7","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Recently, machine learning (ML), deep learning (DL), and natural language processing (NLP) have provided promising results in the free-form radiological reports' classification in the respective medical domain. In order to classify radiological reports properly, a high-quality annotated and curated dataset is required. Currently, no publicly available breast imaging-based radiological dataset exists for the classification of Breast Imaging Reporting and Data System (BI-RADS) categories and breast density scores, as characterized by the American College of Radiology (ACR). To tackle this problem, we construct and annotate a breast imaging-based radiological reports dataset and its benchmark results. The dataset was originally in Spanish. Board-certified radiologists collected and annotated it according to the BI-RADS lexicon and categories at the Breast Radiology department, TecSalud Hospitals Monterrey, Mexico. Initially, it was translated into English language using Google Translate. Afterwards, it was preprocessed by removing duplicates and missing values. After preprocessing, the final dataset consists of 5046 unique reports from 5046 patients with an average age of 53 years and 100% women. Furthermore, we used word-level NLP-based embedding techniques, term frequency-inverse document frequency (TF-IDF) and word2vec to extract semantic and syntactic information. We also compared the performance of ML, DL and large language models (LLMs) classifiers for BI-RADS category classification.</p><p><strong>Results: </strong>The final breast imaging-based radiological reports dataset contains 5046 unique reports. We compared K-Nearest Neighbour (KNN), Support Vector Machine (SVM), Naive Bayes (NB), Random Forest (RF), Adaptive Boosting (AdaBoost), Gradient-Boosting (GB), Extreme Gradient Boosting (XGB), Long Short-Term Memory (LSTM), Bidirectional Encoder Representations from Transformers (BERT) and Biomedical Generative Pre-trained Transformer (BioGPT) classifiers. It is observed that the BioGPT classifier with preprocessed data performed 6% better with a mean sensitivity of 0.60 (95% confidence interval (CI), 0.391-0.812) compared to the second best performing classifier BERT, which achieved mean sensitivity of 0.54 (95% CI, 0.477-0.607).</p><p><strong>Conclusion: </strong>In this work, we propose a curated and annotated benchmark dataset that can be used for BI-RADS and breast density category classification. We also provide baseline results of most ML, DL and LLMs models for BI-RADS classification that can be used as a starting point for future investigation. The main objective of this investigation is to provide a repository for the investigators who wish to enter the field to push the boundaries further.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11515610/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12911-024-02717-7","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Recently, machine learning (ML), deep learning (DL), and natural language processing (NLP) have provided promising results in the free-form radiological reports' classification in the respective medical domain. In order to classify radiological reports properly, a high-quality annotated and curated dataset is required. Currently, no publicly available breast imaging-based radiological dataset exists for the classification of Breast Imaging Reporting and Data System (BI-RADS) categories and breast density scores, as characterized by the American College of Radiology (ACR). To tackle this problem, we construct and annotate a breast imaging-based radiological reports dataset and its benchmark results. The dataset was originally in Spanish. Board-certified radiologists collected and annotated it according to the BI-RADS lexicon and categories at the Breast Radiology department, TecSalud Hospitals Monterrey, Mexico. Initially, it was translated into English language using Google Translate. Afterwards, it was preprocessed by removing duplicates and missing values. After preprocessing, the final dataset consists of 5046 unique reports from 5046 patients with an average age of 53 years and 100% women. Furthermore, we used word-level NLP-based embedding techniques, term frequency-inverse document frequency (TF-IDF) and word2vec to extract semantic and syntactic information. We also compared the performance of ML, DL and large language models (LLMs) classifiers for BI-RADS category classification.

Results: The final breast imaging-based radiological reports dataset contains 5046 unique reports. We compared K-Nearest Neighbour (KNN), Support Vector Machine (SVM), Naive Bayes (NB), Random Forest (RF), Adaptive Boosting (AdaBoost), Gradient-Boosting (GB), Extreme Gradient Boosting (XGB), Long Short-Term Memory (LSTM), Bidirectional Encoder Representations from Transformers (BERT) and Biomedical Generative Pre-trained Transformer (BioGPT) classifiers. It is observed that the BioGPT classifier with preprocessed data performed 6% better with a mean sensitivity of 0.60 (95% confidence interval (CI), 0.391-0.812) compared to the second best performing classifier BERT, which achieved mean sensitivity of 0.54 (95% CI, 0.477-0.607).

Conclusion: In this work, we propose a curated and annotated benchmark dataset that can be used for BI-RADS and breast density category classification. We also provide baseline results of most ML, DL and LLMs models for BI-RADS classification that can be used as a starting point for future investigation. The main objective of this investigation is to provide a repository for the investigators who wish to enter the field to push the boundaries further.

TECRR:利用机器学习、深度学习和大型语言模型基线进行 BI-RADS 分类的放射学报告基准数据集。
背景:最近,机器学习(ML)、深度学习(DL)和自然语言处理(NLP)在相关医疗领域的自由格式放射报告分类中取得了可喜的成果。为了对放射报告进行正确分类,需要高质量的注释和策划数据集。目前,还没有公开可用的基于乳腺成像的放射学数据集,用于对美国放射学会(ACR)规定的乳腺成像报告和数据系统(BI-RADS)类别和乳腺密度评分进行分类。为解决这一问题,我们构建并注释了基于乳腺成像的放射报告数据集及其基准结果。该数据集最初使用西班牙语。墨西哥蒙特雷 TecSalud 医院乳腺放射科的认证放射医师根据 BI-RADS 词典和类别对数据集进行了收集和注释。首先,使用谷歌翻译将其翻译成英语。然后,通过去除重复和缺失值进行预处理。经过预处理后,最终数据集由 5046 份独特的报告组成,这些报告来自 5046 名患者,平均年龄 53 岁,100% 为女性。此外,我们还使用了基于词级 NLP 的嵌入技术、词频-反文档频率(TF-IDF)和 word2vec 来提取语义和句法信息。我们还比较了 ML、DL 和大型语言模型(LLM)分类器在 BI-RADS 类别分类中的性能:最终的基于乳腺成像的放射报告数据集包含 5046 份独特的报告。我们比较了 K-近邻(KNN)、支持向量机(SVM)、奈夫贝叶斯(NB)、随机森林(RF)、自适应提升(AdaBoost)、梯度提升(GB)、极端梯度提升(XGB)、长短期记忆(LSTM)、变换器双向编码器表示(BERT)和生物医学生成预训练变换器(BioGPT)分类器。据观察,与表现第二好的分类器 BERT(平均灵敏度为 0.54(95% 置信区间 (CI),0.477-0.607))相比,预处理数据的 BioGPT 分类器表现好 6%,平均灵敏度为 0.60(95% 置信区间 (CI),0.391-0.812):在这项工作中,我们提出了一个经过策划和注释的基准数据集,可用于 BI-RADS 和乳腺密度类别分类。我们还提供了大多数用于 BI-RADS 分类的 ML、DL 和 LLMs 模型的基准结果,可作为未来研究的起点。这项研究的主要目的是为希望进入这一领域的研究人员提供一个资料库,以进一步推动这一领域的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信