Kaan Şendal, Mahmure Üstün Özgür, Ebru Ortadoğulu Sucu, Melike Başak Findik, Ömer Erdoğan, Erman Oryaşin, Özge Çevik
{"title":"Investigation of antibacterial and anticancer activities of biosynthesized metal-doped and undoped zinc oxide nanoparticles.","authors":"Kaan Şendal, Mahmure Üstün Özgür, Ebru Ortadoğulu Sucu, Melike Başak Findik, Ömer Erdoğan, Erman Oryaşin, Özge Çevik","doi":"10.1002/bab.2683","DOIUrl":null,"url":null,"abstract":"<p><p>Over the past 10 years, nanotechnology has emerged as a very promising technique for a wide range of biomedical applications. Green synthesized metal and metal oxide nanoparticles (NPs) are cheap, easy to produce in large quantities, and safe for the environment. Currently, efforts are being made to dope ZnO in order to improve its optical, electrical, and ferromagnetic qualities as well as its crystallographic quality. Actually, doping is one of the simplest methods for enhancing an NP's physicochemical characteristics because it involves introducing impure ions into the crystal lattice of the particle. In this study, the biosynthesis of zinc oxide NPs (ZnONPs) and metal-doped (Mg<sup>2+</sup> and Ag<sup>+</sup>) ZnONPs was carried out by using aqueous and water-alcoholic extracts of Cynara scolymus L. leaves, Carthamus tinctorius L. flowers, and Rheum ribes L. (RrL) plant, which are rich in phytochemical content. Plant extracts act as a natural reducing, capping, and stabilizing agent in the production. The produced NPs were characterized using a variety of methods, such as ultraviolet-visible spectroscopy, Fourier transform infrared (FTIR) spectroscopy, dynamic light scattering (DLS), and scanning electron microscopy (SEM). The produced metal-doped and undoped ZnONPs exhibited characteristic absorption peaks between 365 and 383 nm due to their surface plasmon resonance bands. SEM analysis revealed that the NPs were oval, nearly spherical, and spherical. In the FTIR spectra, the Zn-O bonding peak ranges from 400 to 700 cm<sup>-1</sup>. The peaks obtained in the range of 407-562 cm<sup>-1</sup> clearly represent the Zn-O bond. In addition, the FTIR results showed that there were notable amounts of phenol and flavonoid compounds in both the prepared extract and ZnONPs. According to DLS analysis results, the size distribution of produced NPs is between 120 and 786 nm. The antibacterial properties of green produced NPs on Gram-positive (Staphylococcus aureus RN4220) and Gram-negative (Escherichia coli DH10B) bacterial strains were investigated by agar well diffusion method. In studies investigating the anticancer activities of biosynthesized NPs, mouse fibroblast cells (L929) were used as healthy cells and human cervical cancer cells (HeLa) were used as cancer cells. Only the produced Ag-ZnONPs showed potent dose-dependent antibacterial activity (at concentrations higher than 100 µg/mL) against Gram-positive and Gram-negative bacteria. RrL-ZnONP-600 and RrL-ZnONP-800 NPs produced with water-ethanol extract of RrL plant and calcined at 600 and 800°C were effective at high concentrations in healthy cells and at low concentrations in HeLa cancer cells, showing that they have the potential to be anticancer agents. The study's findings highlight the potential of green synthesis techniques in the production of medicinal nanomaterials for the treatment of cancer and other biological uses.</p>","PeriodicalId":9274,"journal":{"name":"Biotechnology and applied biochemistry","volume":" ","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2024-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology and applied biochemistry","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/bab.2683","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Over the past 10 years, nanotechnology has emerged as a very promising technique for a wide range of biomedical applications. Green synthesized metal and metal oxide nanoparticles (NPs) are cheap, easy to produce in large quantities, and safe for the environment. Currently, efforts are being made to dope ZnO in order to improve its optical, electrical, and ferromagnetic qualities as well as its crystallographic quality. Actually, doping is one of the simplest methods for enhancing an NP's physicochemical characteristics because it involves introducing impure ions into the crystal lattice of the particle. In this study, the biosynthesis of zinc oxide NPs (ZnONPs) and metal-doped (Mg2+ and Ag+) ZnONPs was carried out by using aqueous and water-alcoholic extracts of Cynara scolymus L. leaves, Carthamus tinctorius L. flowers, and Rheum ribes L. (RrL) plant, which are rich in phytochemical content. Plant extracts act as a natural reducing, capping, and stabilizing agent in the production. The produced NPs were characterized using a variety of methods, such as ultraviolet-visible spectroscopy, Fourier transform infrared (FTIR) spectroscopy, dynamic light scattering (DLS), and scanning electron microscopy (SEM). The produced metal-doped and undoped ZnONPs exhibited characteristic absorption peaks between 365 and 383 nm due to their surface plasmon resonance bands. SEM analysis revealed that the NPs were oval, nearly spherical, and spherical. In the FTIR spectra, the Zn-O bonding peak ranges from 400 to 700 cm-1. The peaks obtained in the range of 407-562 cm-1 clearly represent the Zn-O bond. In addition, the FTIR results showed that there were notable amounts of phenol and flavonoid compounds in both the prepared extract and ZnONPs. According to DLS analysis results, the size distribution of produced NPs is between 120 and 786 nm. The antibacterial properties of green produced NPs on Gram-positive (Staphylococcus aureus RN4220) and Gram-negative (Escherichia coli DH10B) bacterial strains were investigated by agar well diffusion method. In studies investigating the anticancer activities of biosynthesized NPs, mouse fibroblast cells (L929) were used as healthy cells and human cervical cancer cells (HeLa) were used as cancer cells. Only the produced Ag-ZnONPs showed potent dose-dependent antibacterial activity (at concentrations higher than 100 µg/mL) against Gram-positive and Gram-negative bacteria. RrL-ZnONP-600 and RrL-ZnONP-800 NPs produced with water-ethanol extract of RrL plant and calcined at 600 and 800°C were effective at high concentrations in healthy cells and at low concentrations in HeLa cancer cells, showing that they have the potential to be anticancer agents. The study's findings highlight the potential of green synthesis techniques in the production of medicinal nanomaterials for the treatment of cancer and other biological uses.
期刊介绍:
Published since 1979, Biotechnology and Applied Biochemistry is dedicated to the rapid publication of high quality, significant research at the interface between life sciences and their technological exploitation.
The Editors will consider papers for publication based on their novelty and impact as well as their contribution to the advancement of medical biotechnology and industrial biotechnology, covering cutting-edge research in synthetic biology, systems biology, metabolic engineering, bioengineering, biomaterials, biosensing, and nano-biotechnology.