Multiplex antimicrobial activities of the self-assembled amphiphilic polypeptide β nanofiber KF-5 against vaginal pathogens.

IF 5.7 2区 生物学 Q1 BIOLOGY
Ling Fang, Tiancheng Yang, Haojue Wang, Jun Cao
{"title":"Multiplex antimicrobial activities of the self-assembled amphiphilic polypeptide β nanofiber KF-5 against vaginal pathogens.","authors":"Ling Fang, Tiancheng Yang, Haojue Wang, Jun Cao","doi":"10.1186/s13062-024-00546-2","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Vaginal infections caused by multidrug-resistant pathogens such as Candida albicans and Gardnerella spp. represent a significant health challenge. Current treatments often fail because of resistance and toxicity. This study aimed to synthesize and characterize a novel amphiphilic polypeptide, KF-5, and evaluate its antibacterial and antifungal activities, biocompatibility, and potential mechanisms of action.</p><p><strong>Results: </strong>The KF-5 peptide was synthesized via solid-phase peptide synthesis and self-assembled into nanostructures with filamentous and hydrogel-like configurations. Characterization by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and atomic force microscopy (AFM) confirmed the unique nanostructural properties of KF-5. KF-5 (125, 250, or 500 µg/ml) demonstrated potent antibacterial and antifungal activities, with significant inhibitory effects on drug-resistant Candida albicans and Gardnerella spp. (P < 0.05). In vitro assays revealed that 500 µg/ml KF-5 disrupted microbial cell membranes, increased membrane permeability, and induced lipid oxidation, leading to cell death (P < 0.05). Cytotoxicity tests revealed minimal toxicity in human vaginal epithelial cells, keratinocytes, and macrophages, with over 95% viability at high concentrations. Molecular dynamics simulations indicated that KF-5 interacts with phospholipid bilayers through electrostatic interactions, causing membrane disruption. In vivo studies using a mouse model of vaginal infection revealed that 0.5, 1, and 2 mg/ml KF-5 significantly reduced fungal burden and inflammation, and histological analysis confirmed the restoration of vaginal mucosal integrity (P < 0.01). Compared with conventional antifungal treatments such as miconazole, KF-5 exhibited superior efficacy (P < 0.01).</p><p><strong>Conclusions: </strong>KF-5 demonstrates significant potential as a safe and effective antimicrobial agent for treating vaginal infections. Its ability to disrupt microbial membranes while maintaining biocompatibility with human cells highlights its potential for clinical application. These findings provide a foundation for further development of KF-5 as a therapeutic option for combating drug-resistant infections.</p>","PeriodicalId":9164,"journal":{"name":"Biology Direct","volume":"19 1","pages":"96"},"PeriodicalIF":5.7000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11495241/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biology Direct","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13062-024-00546-2","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Vaginal infections caused by multidrug-resistant pathogens such as Candida albicans and Gardnerella spp. represent a significant health challenge. Current treatments often fail because of resistance and toxicity. This study aimed to synthesize and characterize a novel amphiphilic polypeptide, KF-5, and evaluate its antibacterial and antifungal activities, biocompatibility, and potential mechanisms of action.

Results: The KF-5 peptide was synthesized via solid-phase peptide synthesis and self-assembled into nanostructures with filamentous and hydrogel-like configurations. Characterization by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and atomic force microscopy (AFM) confirmed the unique nanostructural properties of KF-5. KF-5 (125, 250, or 500 µg/ml) demonstrated potent antibacterial and antifungal activities, with significant inhibitory effects on drug-resistant Candida albicans and Gardnerella spp. (P < 0.05). In vitro assays revealed that 500 µg/ml KF-5 disrupted microbial cell membranes, increased membrane permeability, and induced lipid oxidation, leading to cell death (P < 0.05). Cytotoxicity tests revealed minimal toxicity in human vaginal epithelial cells, keratinocytes, and macrophages, with over 95% viability at high concentrations. Molecular dynamics simulations indicated that KF-5 interacts with phospholipid bilayers through electrostatic interactions, causing membrane disruption. In vivo studies using a mouse model of vaginal infection revealed that 0.5, 1, and 2 mg/ml KF-5 significantly reduced fungal burden and inflammation, and histological analysis confirmed the restoration of vaginal mucosal integrity (P < 0.01). Compared with conventional antifungal treatments such as miconazole, KF-5 exhibited superior efficacy (P < 0.01).

Conclusions: KF-5 demonstrates significant potential as a safe and effective antimicrobial agent for treating vaginal infections. Its ability to disrupt microbial membranes while maintaining biocompatibility with human cells highlights its potential for clinical application. These findings provide a foundation for further development of KF-5 as a therapeutic option for combating drug-resistant infections.

自组装两亲多肽 β 纳米纤维 KF-5 对阴道病原体的多重抗菌活性。
背景:由白色念珠菌和加德纳菌属等耐多药病原体引起的阴道感染是一项重大的健康挑战。由于耐药性和毒性,目前的治疗方法常常失败。本研究旨在合成和表征一种新型两亲多肽 KF-5,并评估其抗菌和抗真菌活性、生物相容性以及潜在的作用机制:结果:KF-5多肽是通过固相多肽合成法合成的,并自组装成具有丝状和水凝胶状构型的纳米结构。扫描电子显微镜(SEM)、透射电子显微镜(TEM)和原子力显微镜(AFM)的表征证实了 KF-5 独特的纳米结构特性。KF-5(125、250 或 500 微克/毫升)具有很强的抗菌和抗真菌活性,对耐药的白色念珠菌和加德纳菌有显著的抑制作用(P 结论):KF-5 作为一种安全有效的抗菌剂,在治疗阴道感染方面具有巨大潜力。它既能破坏微生物膜,又能保持与人体细胞的生物相容性,这突显了它的临床应用潜力。这些发现为进一步开发 KF-5 作为抗耐药性感染的治疗选择奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biology Direct
Biology Direct 生物-生物学
CiteScore
6.40
自引率
10.90%
发文量
32
审稿时长
7 months
期刊介绍: Biology Direct serves the life science research community as an open access, peer-reviewed online journal, providing authors and readers with an alternative to the traditional model of peer review. Biology Direct considers original research articles, hypotheses, comments, discovery notes and reviews in subject areas currently identified as those most conducive to the open review approach, primarily those with a significant non-experimental component.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信