Weighting of sensory cues reflect changing patterns of visual investment during ecological divergence in Heliconius butterflies.

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
ACS Applied Bio Materials Pub Date : 2024-10-01 Epub Date: 2024-10-23 DOI:10.1098/rsbl.2024.0377
José Borrero, Elisa Mogollon Perez, Daniel Shane Wright, Daniela Lozano-Urrego, Geraldine Rueda-Muñoz, Carolina Pardo-Diaz, Camilo Salazar, Stephen H Montgomery, Richard M Merrill
{"title":"Weighting of sensory cues reflect changing patterns of visual investment during ecological divergence in <i>Heliconius</i> butterflies.","authors":"José Borrero, Elisa Mogollon Perez, Daniel Shane Wright, Daniela Lozano-Urrego, Geraldine Rueda-Muñoz, Carolina Pardo-Diaz, Camilo Salazar, Stephen H Montgomery, Richard M Merrill","doi":"10.1098/rsbl.2024.0377","DOIUrl":null,"url":null,"abstract":"<p><p>Integrating information across sensory modalities enables animals to orchestrate a wide range of complex behaviours. The relative importance placed on one sensory modality over another reflects the reliability of cues in a particular environment and corresponding differences in neural investment. As populations diverge across environmental gradients, the reliability of sensory cues may shift, favouring divergence in neural investment and the weight given to different sensory modalities. During their divergence across closed-forest and forest-edge habitats, closely related butterflies <i>Heliconius cydno</i> and <i>Heliconius melpomene</i> evolved distinct brain morphologies, with the former investing more in vision. Quantitative genetic analyses suggest that selection drove these changes, but their behavioural consequences remain uncertain. We hypothesized that divergent neural investment may alter sensory weighting. We trained individuals in an associative learning experiment using multimodal colour and odour cues. When positively rewarded stimuli were presented in conflict, i.e. pairing positively trained colour with negatively trained odour and <i>vice versa</i>, <i>H. cydno</i> favoured visual cues more strongly than <i>H. melpomene</i>. Hence, differences in sensory weighting may evolve early during divergence and are predicted by patterns of neural investment. These findings, alongside other examples, imply that differences in sensory weighting stem from divergent investment as adaptations to local sensory environments.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11496948/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1098/rsbl.2024.0377","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/23 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

Integrating information across sensory modalities enables animals to orchestrate a wide range of complex behaviours. The relative importance placed on one sensory modality over another reflects the reliability of cues in a particular environment and corresponding differences in neural investment. As populations diverge across environmental gradients, the reliability of sensory cues may shift, favouring divergence in neural investment and the weight given to different sensory modalities. During their divergence across closed-forest and forest-edge habitats, closely related butterflies Heliconius cydno and Heliconius melpomene evolved distinct brain morphologies, with the former investing more in vision. Quantitative genetic analyses suggest that selection drove these changes, but their behavioural consequences remain uncertain. We hypothesized that divergent neural investment may alter sensory weighting. We trained individuals in an associative learning experiment using multimodal colour and odour cues. When positively rewarded stimuli were presented in conflict, i.e. pairing positively trained colour with negatively trained odour and vice versa, H. cydno favoured visual cues more strongly than H. melpomene. Hence, differences in sensory weighting may evolve early during divergence and are predicted by patterns of neural investment. These findings, alongside other examples, imply that differences in sensory weighting stem from divergent investment as adaptations to local sensory environments.

感觉线索的权重反映了 Heliconius 蝴蝶生态分化过程中视觉投资模式的变化。
整合各种感官模式的信息使动物能够协调各种复杂的行为。一种感官模式相对于另一种感官模式的重要性反映了特定环境中线索的可靠性以及相应的神经投资差异。随着种群在环境梯度上的分化,感觉线索的可靠性可能会发生变化,从而有利于神经投资的分化和不同感觉模式所占权重的差异。在封闭森林和森林边缘栖息地的分化过程中,近缘蝴蝶Heliconius cydno和Heliconius melpomene进化出了不同的大脑形态,前者在视觉上投入更多。定量遗传分析表明,选择驱动了这些变化,但其行为后果仍不确定。我们假设,不同的神经投资可能会改变感觉权重。我们利用多模态颜色和气味线索对个体进行了联想学习实验训练。当正奖赏刺激与负奖赏刺激发生冲突时,即正向训练的颜色与负向训练的气味配对,反之亦然。因此,感官权重的差异可能在分化早期就已出现,并可通过神经投资模式进行预测。这些发现以及其他例子都意味着,感觉权重的差异源于分化投资,是对当地感觉环境的适应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信