Micro-thin hydrogel coating integrated in 3D printing for spatiotemporal delivery of bioactive small molecules.

IF 8.2 2区 医学 Q1 ENGINEERING, BIOMEDICAL
Md Sarker, Soomin Park, Vivek Kumar, Chang H Lee
{"title":"Micro-thin hydrogel coating integrated in 3D printing for spatiotemporal delivery of bioactive small molecules.","authors":"Md Sarker, Soomin Park, Vivek Kumar, Chang H Lee","doi":"10.1088/1758-5090/ad89fe","DOIUrl":null,"url":null,"abstract":"<p><p>Three-dimensional (3D) printing incorporated with controlled delivery is an effective tool for complex tissue regeneration. Here, we explored a new strategy for spatiotemporal delivery of bioactive cues by establishing a precise-controlled micro-thin coating of hydrogel carriers on 3D-printed scaffolds. We optimized the printing parameters for three hydrogel carriers, fibrin cross-linked with genipin, methacrylate hyaluronic acid, and multidomain peptides, resulting in homogenous micro-coating on desired locations in 3D printed polycaprolactone microfibers at each layer. Using the optimized multi-head printing technique, we successfully established spatial-controlled micro-thin coating of hydrogel layers containing profibrogenic small molecules (SMs), Oxotremorine M and PPBP maleate, and a chondrogenic cue, Kartogenin. The delivered SMs showed sustained releases up to 28 d and guided regional differentiation of mesenchymal stem cells, thus leading to fibrous and cartilaginous tissue matrix formation at designated scaffold regions<i>in vitro</i>and<i>in vivo</i>. Our micro-coating of hydrogel carriers may serve as an efficient approach to achieve spatiotemporal delivery of various bioactive cues through 3D printed scaffolds for engineering complex tissues.</p>","PeriodicalId":8964,"journal":{"name":"Biofabrication","volume":" ","pages":""},"PeriodicalIF":8.2000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11552100/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biofabrication","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1758-5090/ad89fe","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Three-dimensional (3D) printing incorporated with controlled delivery is an effective tool for complex tissue regeneration. Here, we explored a new strategy for spatiotemporal delivery of bioactive cues by establishing a precise-controlled micro-thin coating of hydrogel carriers on 3D-printed scaffolds. We optimized the printing parameters for three hydrogel carriers, fibrin cross-linked with genipin, methacrylate hyaluronic acid, and multidomain peptides, resulting in homogenous micro-coating on desired locations in 3D printed polycaprolactone microfibers at each layer. Using the optimized multi-head printing technique, we successfully established spatial-controlled micro-thin coating of hydrogel layers containing profibrogenic small molecules (SMs), Oxotremorine M and PPBP maleate, and a chondrogenic cue, Kartogenin. The delivered SMs showed sustained releases up to 28 d and guided regional differentiation of mesenchymal stem cells, thus leading to fibrous and cartilaginous tissue matrix formation at designated scaffold regionsin vitroandin vivo. Our micro-coating of hydrogel carriers may serve as an efficient approach to achieve spatiotemporal delivery of various bioactive cues through 3D printed scaffolds for engineering complex tissues.

在三维打印中集成微薄水凝胶涂层,用于生物活性小分子的时空传输。
三维(3D)打印结合可控递送是复杂组织再生的有效工具。在这里,我们通过在三维打印支架上精确控制水凝胶载体的微薄涂层,探索了一种生物活性线索时空递送的新策略。我们优化了三种水凝胶载体(与基因素交联的纤维蛋白(FibGen)、甲基丙烯酸透明质酸(HAMA)和多肽(MDP))的打印参数,从而在三维打印 PCL 微纤维的每层所需位置上实现了均匀的微涂层。利用优化的多头打印技术,我们成功地在含有促生长小分子 Oxo-M 和 4-PPBP 以及软骨生成线索 Kartogenin (KGN) 的水凝胶层上建立了空间可控的微薄涂层。输送的小分子可持续释放 28 天,并引导间充质干细胞(MSCs)的区域分化,从而在体外和体内指定的支架区域形成纤维和软骨组织基质。我们的水凝胶载体微涂层可以作为一种有效的方法,通过三维打印支架实现各种生物活性线索的时空传递,从而实现复杂组织的工程化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biofabrication
Biofabrication ENGINEERING, BIOMEDICAL-MATERIALS SCIENCE, BIOMATERIALS
CiteScore
17.40
自引率
3.30%
发文量
118
审稿时长
2 months
期刊介绍: Biofabrication is dedicated to advancing cutting-edge research on the utilization of cells, proteins, biological materials, and biomaterials as fundamental components for the construction of biological systems and/or therapeutic products. Additionally, it proudly serves as the official journal of the International Society for Biofabrication (ISBF).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信