Seonhwa Hwang, Min-Seo Park, Anthony Junhoe Koo, Eunsoo Yoo, Seh-Hyon Song, Hye-Kyung Kim, Min-Hi Park, Jae-Seon Kang
{"title":"Compound K Promotes Megakaryocytic Differentiation by NLRP3 Inflammasome Activation.","authors":"Seonhwa Hwang, Min-Seo Park, Anthony Junhoe Koo, Eunsoo Yoo, Seh-Hyon Song, Hye-Kyung Kim, Min-Hi Park, Jae-Seon Kang","doi":"10.3390/biom14101257","DOIUrl":null,"url":null,"abstract":"<p><p>Platelets are essential blood components that maintain hemostasis, prevent excessive bleeding, and facilitate wound healing. Reduced platelet counts are implicated in various diseases, including leukemia, hepatitis, cancer, and Alzheimer's disease. Enhancing megakaryocytic differentiation is a promising strategy to increase platelet production. Compound K (CK), a major bioactive metabolite of ginsenosides from <i>Panax ginseng</i>, has demonstrated anti-cancer and neuroprotective properties. In this study, we investigated the effects of CK on megakaryocytic differentiation and apoptosis in chronic myeloid leukemia (CML) cell lines K562 and Meg-01. CK treatment significantly upregulated the mRNA expression of key megakaryocytic differentiation markers, including CD61, CD41, and CD42a, and promoted the formation of large, multinucleated cells in K562 cells. Additionally, flow cytometry analysis revealed that CK at 5 µM induced apoptosis, a critical process in thrombocytopoiesis, in both K562 and Meg-01 cells. RT<sup>2</sup> Profiler PCR array analysis further identified a marked increase in the expression of genes associated with the activation of the NLRP3 inflammasome in CK-treated K562 and Meg-01 cells. This study is the first to demonstrate that CK promotes megakaryocytic differentiation and apoptosis through the activation of the ERK/EGR1 and NLRP3 inflammasome pathways. These findings suggest that CK may enhance platelet production, indicating its potential as a therapeutic candidate for platelet-related disorders and other associated diseases.</p>","PeriodicalId":8943,"journal":{"name":"Biomolecules","volume":null,"pages":null},"PeriodicalIF":4.8000,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11506438/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomolecules","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/biom14101257","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Platelets are essential blood components that maintain hemostasis, prevent excessive bleeding, and facilitate wound healing. Reduced platelet counts are implicated in various diseases, including leukemia, hepatitis, cancer, and Alzheimer's disease. Enhancing megakaryocytic differentiation is a promising strategy to increase platelet production. Compound K (CK), a major bioactive metabolite of ginsenosides from Panax ginseng, has demonstrated anti-cancer and neuroprotective properties. In this study, we investigated the effects of CK on megakaryocytic differentiation and apoptosis in chronic myeloid leukemia (CML) cell lines K562 and Meg-01. CK treatment significantly upregulated the mRNA expression of key megakaryocytic differentiation markers, including CD61, CD41, and CD42a, and promoted the formation of large, multinucleated cells in K562 cells. Additionally, flow cytometry analysis revealed that CK at 5 µM induced apoptosis, a critical process in thrombocytopoiesis, in both K562 and Meg-01 cells. RT2 Profiler PCR array analysis further identified a marked increase in the expression of genes associated with the activation of the NLRP3 inflammasome in CK-treated K562 and Meg-01 cells. This study is the first to demonstrate that CK promotes megakaryocytic differentiation and apoptosis through the activation of the ERK/EGR1 and NLRP3 inflammasome pathways. These findings suggest that CK may enhance platelet production, indicating its potential as a therapeutic candidate for platelet-related disorders and other associated diseases.
BiomoleculesBiochemistry, Genetics and Molecular Biology-Molecular Biology
CiteScore
9.40
自引率
3.60%
发文量
1640
审稿时长
18.28 days
期刊介绍:
Biomolecules (ISSN 2218-273X) is an international, peer-reviewed open access journal focusing on biogenic substances and their biological functions, structures, interactions with other molecules, and their microenvironment as well as biological systems. Biomolecules publishes reviews, regular research papers and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.