Xiaojing Lin, Qiang Sun, Yang Cao, Zi Li, Cuiling Xu, Jun Liu, Jingdong Song, Kun Qin, Yong Zhang, Jianfang Zhou
{"title":"A Novel Peptide from VP1 of EV-D68 Exhibits Broad-Spectrum Antiviral Activity Against Human Enteroviruses.","authors":"Xiaojing Lin, Qiang Sun, Yang Cao, Zi Li, Cuiling Xu, Jun Liu, Jingdong Song, Kun Qin, Yong Zhang, Jianfang Zhou","doi":"10.3390/biom14101331","DOIUrl":null,"url":null,"abstract":"<p><p>Enteroviruses have been a historical concern since the identification of polioviruses in humans. Wild polioviruses have almost been eliminated, while multiple species of non-polio enteroviruses and their variants co-circulate annually. To date, at least 116 types have been found in humans and are grouped into the species Enterovirus A-D and Rhinovirus A-C. However, there are few available antiviral drugs, especially with a universal pharmaceutical effect. Here, we demonstrate that peptide P25 from EV-D68 has broad antiviral activity against EV A-D enteroviruses in vitro. P25, derived from the HI loop and β-I sheet of VP1, operates through a conserved hydrophilic motif -R---K-K--K- and the hydrophobic F near the N-terminus. It could prevent viral infection of EV-A71 by competing for the heparan sulfate (HS) receptor, binding and stabilizing virions by suppressing the release of the viral genome. P25 also inhibited the generation of infectious viral particles by reducing viral protein synthesis. The molecular docking revealed that P25 might bind to the pocket opening area, a potential target for broad-spectrum antivirals. Our findings implicate the multiple antiviral effects of peptide P25, including blocking viral binding to the HS receptor, impeding viral genome release, and reducing progeny particles, which could be a novel universal anti-enterovirus drug candidate.</p>","PeriodicalId":8943,"journal":{"name":"Biomolecules","volume":null,"pages":null},"PeriodicalIF":4.8000,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11506774/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomolecules","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/biom14101331","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Enteroviruses have been a historical concern since the identification of polioviruses in humans. Wild polioviruses have almost been eliminated, while multiple species of non-polio enteroviruses and their variants co-circulate annually. To date, at least 116 types have been found in humans and are grouped into the species Enterovirus A-D and Rhinovirus A-C. However, there are few available antiviral drugs, especially with a universal pharmaceutical effect. Here, we demonstrate that peptide P25 from EV-D68 has broad antiviral activity against EV A-D enteroviruses in vitro. P25, derived from the HI loop and β-I sheet of VP1, operates through a conserved hydrophilic motif -R---K-K--K- and the hydrophobic F near the N-terminus. It could prevent viral infection of EV-A71 by competing for the heparan sulfate (HS) receptor, binding and stabilizing virions by suppressing the release of the viral genome. P25 also inhibited the generation of infectious viral particles by reducing viral protein synthesis. The molecular docking revealed that P25 might bind to the pocket opening area, a potential target for broad-spectrum antivirals. Our findings implicate the multiple antiviral effects of peptide P25, including blocking viral binding to the HS receptor, impeding viral genome release, and reducing progeny particles, which could be a novel universal anti-enterovirus drug candidate.
BiomoleculesBiochemistry, Genetics and Molecular Biology-Molecular Biology
CiteScore
9.40
自引率
3.60%
发文量
1640
审稿时长
18.28 days
期刊介绍:
Biomolecules (ISSN 2218-273X) is an international, peer-reviewed open access journal focusing on biogenic substances and their biological functions, structures, interactions with other molecules, and their microenvironment as well as biological systems. Biomolecules publishes reviews, regular research papers and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.