{"title":"Peak Identification in Evolutionary Multimodal Optimization: Model, Algorithms, and Metrics.","authors":"Yu-Hui Zhang, Zi-Jia Wang","doi":"10.3390/biomimetics9100643","DOIUrl":null,"url":null,"abstract":"<p><p>In this paper, we present a two-phase multimodal optimization model designed to efficiently and accurately identify multiple optima. The first phase employs a population-based search algorithm to locate potential optima, while the second phase introduces a novel peak identification (PI) procedure to filter out non-optimal solutions, ensuring that each identified solution represents a distinct optimum. This approach not only enhances the effectiveness of multimodal optimization but also addresses the issue of redundant solutions prevalent in existing algorithms. We propose two PI algorithms: HVPI, which uses a hill-valley approach to distinguish between optima, without requiring prior knowledge of niche radii; and HVPIC, which integrates HVPI with bisecting K-means clustering to reduce the number of fitness evaluations (FEs). The performance of these algorithms was evaluated using the F-measure, a comprehensive metric that accounts for both the accuracy and redundancy in the solution set. Extensive experiments on a suite of benchmark functions and engineering problems demonstrated that our proposed algorithms achieved a high precision and recall, significantly outperforming traditional methods.</p>","PeriodicalId":8907,"journal":{"name":"Biomimetics","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11505590/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomimetics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/biomimetics9100643","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we present a two-phase multimodal optimization model designed to efficiently and accurately identify multiple optima. The first phase employs a population-based search algorithm to locate potential optima, while the second phase introduces a novel peak identification (PI) procedure to filter out non-optimal solutions, ensuring that each identified solution represents a distinct optimum. This approach not only enhances the effectiveness of multimodal optimization but also addresses the issue of redundant solutions prevalent in existing algorithms. We propose two PI algorithms: HVPI, which uses a hill-valley approach to distinguish between optima, without requiring prior knowledge of niche radii; and HVPIC, which integrates HVPI with bisecting K-means clustering to reduce the number of fitness evaluations (FEs). The performance of these algorithms was evaluated using the F-measure, a comprehensive metric that accounts for both the accuracy and redundancy in the solution set. Extensive experiments on a suite of benchmark functions and engineering problems demonstrated that our proposed algorithms achieved a high precision and recall, significantly outperforming traditional methods.