A Scoping Review of 'Smart' Dressings for Diagnosing Surgical Site Infection: A Focus on Arthroplasty.

IF 3.8 3区 医学 Q2 ENGINEERING, BIOMEDICAL
Samuel W King, Alexander Abouharb, Thomas Doggett, Mohamad Taufiqurrakhman, Jeya Palan, Bulut Freear, Hemant Pandit, Bernard H van Duren
{"title":"A Scoping Review of 'Smart' Dressings for Diagnosing Surgical Site Infection: A Focus on Arthroplasty.","authors":"Samuel W King, Alexander Abouharb, Thomas Doggett, Mohamad Taufiqurrakhman, Jeya Palan, Bulut Freear, Hemant Pandit, Bernard H van Duren","doi":"10.3390/bioengineering11101049","DOIUrl":null,"url":null,"abstract":"<p><p>Early diagnosis and treatment of surgical wound infection can be challenging. This is especially relevant in the management of periprosthetic joint infection: early detection is key to success and reducing morbidity, mortality and resource use. 'Smart' dressings have been developed to detect parameters suggestive of infection. This scoping review investigates the current status of the field, limited to devices tested in animal models and/or humans, with a focus on their application to arthroplasty. The literature was searched using MEDLINE/PubMed and Embase databases from 2000 to 2023. Original articles assessing external sensing methods for the detection of wound infection in animal models or human participants were included. Sixteen articles were eligible. The results were broadly divided by sensing method: colorimetric, electrochemical and fluorescence/photothermal responses. Six of the devices detected more than one parameter (multimodal), while the rest were unimodal. The most common parameters examined were temperature and pH. Most 'smart' dressings focused on diagnosing infection in chronic wounds, and none were tested in humans with wound infections. There is limited late-stage research into using dressing sensors to diagnose wound infection in post-surgical patients. Future research should explore this to enable inpatient and remote outpatient monitoring of post-operative wounds to detect wound infection.</p>","PeriodicalId":8874,"journal":{"name":"Bioengineering","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11505597/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bioengineering11101049","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Early diagnosis and treatment of surgical wound infection can be challenging. This is especially relevant in the management of periprosthetic joint infection: early detection is key to success and reducing morbidity, mortality and resource use. 'Smart' dressings have been developed to detect parameters suggestive of infection. This scoping review investigates the current status of the field, limited to devices tested in animal models and/or humans, with a focus on their application to arthroplasty. The literature was searched using MEDLINE/PubMed and Embase databases from 2000 to 2023. Original articles assessing external sensing methods for the detection of wound infection in animal models or human participants were included. Sixteen articles were eligible. The results were broadly divided by sensing method: colorimetric, electrochemical and fluorescence/photothermal responses. Six of the devices detected more than one parameter (multimodal), while the rest were unimodal. The most common parameters examined were temperature and pH. Most 'smart' dressings focused on diagnosing infection in chronic wounds, and none were tested in humans with wound infections. There is limited late-stage research into using dressing sensors to diagnose wound infection in post-surgical patients. Future research should explore this to enable inpatient and remote outpatient monitoring of post-operative wounds to detect wound infection.

用于诊断手术部位感染的 "智能 "敷料的范围研究:聚焦关节成形术。
手术伤口感染的早期诊断和治疗具有挑战性。这一点在假体周围关节感染的治疗中尤为重要:早期发现是成功的关键,也是降低发病率、死亡率和资源使用的关键。目前已开发出 "智能 "敷料来检测提示感染的参数。本范围综述调查了该领域的现状,仅限于在动物模型和/或人体中进行过测试的设备,重点关注其在关节成形术中的应用。我们使用 MEDLINE/PubMed 和 Embase 数据库对 2000 年至 2023 年的文献进行了检索。纳入了评估用于检测动物模型或人体参与者伤口感染的外部传感方法的原创文章。符合条件的文章有 16 篇。结果按传感方法大致分为:比色法、电化学法和荧光/光热反应法。其中六种设备可检测到一种以上的参数(多模态),而其他设备则为单模态。最常见的检测参数是温度和 pH 值。大多数 "智能 "敷料主要用于诊断慢性伤口感染,没有一种敷料在人类伤口感染中进行过测试。使用敷料传感器诊断手术后患者伤口感染的后期研究还很有限。未来的研究应对此进行探索,以便对住院病人和远程门诊病人的术后伤口进行监测,检测伤口感染情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Bioengineering
Bioengineering Chemical Engineering-Bioengineering
CiteScore
4.00
自引率
8.70%
发文量
661
期刊介绍: Aims Bioengineering (ISSN 2306-5354) provides an advanced forum for the science and technology of bioengineering. It publishes original research papers, comprehensive reviews, communications and case reports. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. All aspects of bioengineering are welcomed from theoretical concepts to education and applications. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, four key features of this Journal: ● We are introducing a new concept in scientific and technical publications “The Translational Case Report in Bioengineering”. It is a descriptive explanatory analysis of a transformative or translational event. Understanding that the goal of bioengineering scholarship is to advance towards a transformative or clinical solution to an identified transformative/clinical need, the translational case report is used to explore causation in order to find underlying principles that may guide other similar transformative/translational undertakings. ● Manuscripts regarding research proposals and research ideas will be particularly welcomed. ● Electronic files and software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. ● We also accept manuscripts communicating to a broader audience with regard to research projects financed with public funds. Scope ● Bionics and biological cybernetics: implantology; bio–abio interfaces ● Bioelectronics: wearable electronics; implantable electronics; “more than Moore” electronics; bioelectronics devices ● Bioprocess and biosystems engineering and applications: bioprocess design; biocatalysis; bioseparation and bioreactors; bioinformatics; bioenergy; etc. ● Biomolecular, cellular and tissue engineering and applications: tissue engineering; chromosome engineering; embryo engineering; cellular, molecular and synthetic biology; metabolic engineering; bio-nanotechnology; micro/nano technologies; genetic engineering; transgenic technology ● Biomedical engineering and applications: biomechatronics; biomedical electronics; biomechanics; biomaterials; biomimetics; biomedical diagnostics; biomedical therapy; biomedical devices; sensors and circuits; biomedical imaging and medical information systems; implants and regenerative medicine; neurotechnology; clinical engineering; rehabilitation engineering ● Biochemical engineering and applications: metabolic pathway engineering; modeling and simulation ● Translational bioengineering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信