Samuel W King, Alexander Abouharb, Thomas Doggett, Mohamad Taufiqurrakhman, Jeya Palan, Bulut Freear, Hemant Pandit, Bernard H van Duren
{"title":"A Scoping Review of 'Smart' Dressings for Diagnosing Surgical Site Infection: A Focus on Arthroplasty.","authors":"Samuel W King, Alexander Abouharb, Thomas Doggett, Mohamad Taufiqurrakhman, Jeya Palan, Bulut Freear, Hemant Pandit, Bernard H van Duren","doi":"10.3390/bioengineering11101049","DOIUrl":null,"url":null,"abstract":"<p><p>Early diagnosis and treatment of surgical wound infection can be challenging. This is especially relevant in the management of periprosthetic joint infection: early detection is key to success and reducing morbidity, mortality and resource use. 'Smart' dressings have been developed to detect parameters suggestive of infection. This scoping review investigates the current status of the field, limited to devices tested in animal models and/or humans, with a focus on their application to arthroplasty. The literature was searched using MEDLINE/PubMed and Embase databases from 2000 to 2023. Original articles assessing external sensing methods for the detection of wound infection in animal models or human participants were included. Sixteen articles were eligible. The results were broadly divided by sensing method: colorimetric, electrochemical and fluorescence/photothermal responses. Six of the devices detected more than one parameter (multimodal), while the rest were unimodal. The most common parameters examined were temperature and pH. Most 'smart' dressings focused on diagnosing infection in chronic wounds, and none were tested in humans with wound infections. There is limited late-stage research into using dressing sensors to diagnose wound infection in post-surgical patients. Future research should explore this to enable inpatient and remote outpatient monitoring of post-operative wounds to detect wound infection.</p>","PeriodicalId":8874,"journal":{"name":"Bioengineering","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11505597/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bioengineering11101049","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Early diagnosis and treatment of surgical wound infection can be challenging. This is especially relevant in the management of periprosthetic joint infection: early detection is key to success and reducing morbidity, mortality and resource use. 'Smart' dressings have been developed to detect parameters suggestive of infection. This scoping review investigates the current status of the field, limited to devices tested in animal models and/or humans, with a focus on their application to arthroplasty. The literature was searched using MEDLINE/PubMed and Embase databases from 2000 to 2023. Original articles assessing external sensing methods for the detection of wound infection in animal models or human participants were included. Sixteen articles were eligible. The results were broadly divided by sensing method: colorimetric, electrochemical and fluorescence/photothermal responses. Six of the devices detected more than one parameter (multimodal), while the rest were unimodal. The most common parameters examined were temperature and pH. Most 'smart' dressings focused on diagnosing infection in chronic wounds, and none were tested in humans with wound infections. There is limited late-stage research into using dressing sensors to diagnose wound infection in post-surgical patients. Future research should explore this to enable inpatient and remote outpatient monitoring of post-operative wounds to detect wound infection.
期刊介绍:
Aims
Bioengineering (ISSN 2306-5354) provides an advanced forum for the science and technology of bioengineering. It publishes original research papers, comprehensive reviews, communications and case reports. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. All aspects of bioengineering are welcomed from theoretical concepts to education and applications. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, four key features of this Journal:
● We are introducing a new concept in scientific and technical publications “The Translational Case Report in Bioengineering”. It is a descriptive explanatory analysis of a transformative or translational event. Understanding that the goal of bioengineering scholarship is to advance towards a transformative or clinical solution to an identified transformative/clinical need, the translational case report is used to explore causation in order to find underlying principles that may guide other similar transformative/translational undertakings.
● Manuscripts regarding research proposals and research ideas will be particularly welcomed.
● Electronic files and software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.
● We also accept manuscripts communicating to a broader audience with regard to research projects financed with public funds.
Scope
● Bionics and biological cybernetics: implantology; bio–abio interfaces
● Bioelectronics: wearable electronics; implantable electronics; “more than Moore” electronics; bioelectronics devices
● Bioprocess and biosystems engineering and applications: bioprocess design; biocatalysis; bioseparation and bioreactors; bioinformatics; bioenergy; etc.
● Biomolecular, cellular and tissue engineering and applications: tissue engineering; chromosome engineering; embryo engineering; cellular, molecular and synthetic biology; metabolic engineering; bio-nanotechnology; micro/nano technologies; genetic engineering; transgenic technology
● Biomedical engineering and applications: biomechatronics; biomedical electronics; biomechanics; biomaterials; biomimetics; biomedical diagnostics; biomedical therapy; biomedical devices; sensors and circuits; biomedical imaging and medical information systems; implants and regenerative medicine; neurotechnology; clinical engineering; rehabilitation engineering
● Biochemical engineering and applications: metabolic pathway engineering; modeling and simulation
● Translational bioengineering