The dopamine transporter inhibition using GBR 12909 as a novel pharmacological tool to assess bipolar disorder-like neurobehavioral phenotypes in zebrafish
{"title":"The dopamine transporter inhibition using GBR 12909 as a novel pharmacological tool to assess bipolar disorder-like neurobehavioral phenotypes in zebrafish","authors":"","doi":"10.1016/j.bbr.2024.115302","DOIUrl":null,"url":null,"abstract":"<div><div>Dopamine (DA) is a neurotransmitter that plays an important role in brain physiology. Changes in DA-mediated signaling have been implicated with the pathophysiology of various neuropsychiatric conditions. Bipolar disorder (BD) is a mental disorder, characterized by alterning between manic/hypomanic and depressive mood. In experimental research, the pharmacological inhibition of DA reuptake using GBR 12909 serves as a tool to elicit BD-like phenotypes. Alternative model organisms, such as the zebrafish (<em>Danio rerio</em>), have been considered important systems for investigating the neurobehavioral changes involved in different neuropsychiatric conditions, including BD. Here, we discuss the use of GBR 12909 as a novel pharmacological strategy to mimic BD-like phenotypes in zebrafish models. We also emphasize the well-conserved DA-mediated signaling in zebrafish and the early expression of dopaminergic biomarkers in the brain, especially focusing on dopamine transporter (DAT), the main target of GBR 12909. Finally, we discuss potential advantages and limitations in the field, the perspectives of using GBR 12909 in BD research, and how distinct validation criteria (<em>i.e.</em>, face, predictive, and construct validity) can be assessed in translational approaches using zebrafish-based models.</div></div>","PeriodicalId":8823,"journal":{"name":"Behavioural Brain Research","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Behavioural Brain Research","FirstCategoryId":"102","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166432824004583","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BEHAVIORAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Dopamine (DA) is a neurotransmitter that plays an important role in brain physiology. Changes in DA-mediated signaling have been implicated with the pathophysiology of various neuropsychiatric conditions. Bipolar disorder (BD) is a mental disorder, characterized by alterning between manic/hypomanic and depressive mood. In experimental research, the pharmacological inhibition of DA reuptake using GBR 12909 serves as a tool to elicit BD-like phenotypes. Alternative model organisms, such as the zebrafish (Danio rerio), have been considered important systems for investigating the neurobehavioral changes involved in different neuropsychiatric conditions, including BD. Here, we discuss the use of GBR 12909 as a novel pharmacological strategy to mimic BD-like phenotypes in zebrafish models. We also emphasize the well-conserved DA-mediated signaling in zebrafish and the early expression of dopaminergic biomarkers in the brain, especially focusing on dopamine transporter (DAT), the main target of GBR 12909. Finally, we discuss potential advantages and limitations in the field, the perspectives of using GBR 12909 in BD research, and how distinct validation criteria (i.e., face, predictive, and construct validity) can be assessed in translational approaches using zebrafish-based models.
期刊介绍:
Behavioural Brain Research is an international, interdisciplinary journal dedicated to the publication of articles in the field of behavioural neuroscience, broadly defined. Contributions from the entire range of disciplines that comprise the neurosciences, behavioural sciences or cognitive sciences are appropriate, as long as the goal is to delineate the neural mechanisms underlying behaviour. Thus, studies may range from neurophysiological, neuroanatomical, neurochemical or neuropharmacological analysis of brain-behaviour relations, including the use of molecular genetic or behavioural genetic approaches, to studies that involve the use of brain imaging techniques, to neuroethological studies. Reports of original research, of major methodological advances, or of novel conceptual approaches are all encouraged. The journal will also consider critical reviews on selected topics.