Ye Zhang , Li Gui , Yan Yin , Xiaona Tong , Guobin Xia , Yuanyuan Wang , Jingting Yi , Chunyan Tian , Xiaobo Liu , Hongling Yang
{"title":"Network pharmacology integrated with pharmacological evaluation for investigating the mechanism of resveratrol in perimenopausal depression","authors":"Ye Zhang , Li Gui , Yan Yin , Xiaona Tong , Guobin Xia , Yuanyuan Wang , Jingting Yi , Chunyan Tian , Xiaobo Liu , Hongling Yang","doi":"10.1016/j.bbr.2024.115304","DOIUrl":null,"url":null,"abstract":"<div><div>Perimenopause constitutes a pivotal transitional phase characterized by hormonal variability and heightens vulnerability to depressive episodes. This study seeks to elucidate the mechanism of resveratrol (RES) in perimenopausal depression through integrated network pharmacology, molecular docking analysis, and experimental validation. Screening yielded 83 RES-related disease targets, with IL10, CCL2, and SERPINE1 identified as core genes overexpressed in perimenopausal depression. GO analysis and KEGG pathway enrichment analysis predicted that the target genes could regulate the PI3K-Akt, FoxO, HIF-1, and IL-17 signaling pathways. Molecular docking indicated SERPINE1 as a promising RES target. Consistently, <em>in vitro</em> experiments showed that RES significantly attenuated the inflammatory response and apoptosis of lipopolysaccharide-stimulated CTX-TNA2 cells. RES also reduced the expression of NLRP3, caspase-1, SERPINE1 proteins and acetylation, while increasing the expression of BDNF, TrkB, SIRT1, and decreasing MAO-A proteins. <em>In vivo</em> experiments demonstrated that RES also significantly improved the depression behaviors, increased the levels of 5-HT1A and SIRT1, and decreased levels of MAO-A of depression rats. This study unveils RES's potential targets and mechanism in perimenopausal depression, laying groundwork for future research.</div></div>","PeriodicalId":8823,"journal":{"name":"Behavioural Brain Research","volume":"477 ","pages":"Article 115304"},"PeriodicalIF":2.6000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Behavioural Brain Research","FirstCategoryId":"102","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166432824004601","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BEHAVIORAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Perimenopause constitutes a pivotal transitional phase characterized by hormonal variability and heightens vulnerability to depressive episodes. This study seeks to elucidate the mechanism of resveratrol (RES) in perimenopausal depression through integrated network pharmacology, molecular docking analysis, and experimental validation. Screening yielded 83 RES-related disease targets, with IL10, CCL2, and SERPINE1 identified as core genes overexpressed in perimenopausal depression. GO analysis and KEGG pathway enrichment analysis predicted that the target genes could regulate the PI3K-Akt, FoxO, HIF-1, and IL-17 signaling pathways. Molecular docking indicated SERPINE1 as a promising RES target. Consistently, in vitro experiments showed that RES significantly attenuated the inflammatory response and apoptosis of lipopolysaccharide-stimulated CTX-TNA2 cells. RES also reduced the expression of NLRP3, caspase-1, SERPINE1 proteins and acetylation, while increasing the expression of BDNF, TrkB, SIRT1, and decreasing MAO-A proteins. In vivo experiments demonstrated that RES also significantly improved the depression behaviors, increased the levels of 5-HT1A and SIRT1, and decreased levels of MAO-A of depression rats. This study unveils RES's potential targets and mechanism in perimenopausal depression, laying groundwork for future research.
期刊介绍:
Behavioural Brain Research is an international, interdisciplinary journal dedicated to the publication of articles in the field of behavioural neuroscience, broadly defined. Contributions from the entire range of disciplines that comprise the neurosciences, behavioural sciences or cognitive sciences are appropriate, as long as the goal is to delineate the neural mechanisms underlying behaviour. Thus, studies may range from neurophysiological, neuroanatomical, neurochemical or neuropharmacological analysis of brain-behaviour relations, including the use of molecular genetic or behavioural genetic approaches, to studies that involve the use of brain imaging techniques, to neuroethological studies. Reports of original research, of major methodological advances, or of novel conceptual approaches are all encouraged. The journal will also consider critical reviews on selected topics.