Li Zhao , Huizheng Wang , Zanxia Cao , Qiang Li , Zhenghua Li , Liling Zhao , Ying Liu , Zhenling Huang , Enguang Lv
{"title":"Two medicinal molecules Hydralazine and Isoniazid have the potential to control wheat crown rot by combing with a N-acetyltransferase FDB2","authors":"Li Zhao , Huizheng Wang , Zanxia Cao , Qiang Li , Zhenghua Li , Liling Zhao , Ying Liu , Zhenling Huang , Enguang Lv","doi":"10.1016/j.bbrc.2024.150893","DOIUrl":null,"url":null,"abstract":"<div><div><em>Fusarium pseudograminearum</em> is the main pathogen that causes wheat crown rot (WCR), causing serious harm to wheat production. Wheat secretes Benzoxazolinones (Bxs) as fungicidins to prevent <em>F. pseudograminearum</em> infection. Fusarium Detoxification of Bx 2 (FDB2) can degrade Bx to non-fungitoxic N-(2-hydroxyphenyl) malonamic acid. Therefore, FDB2 may be a potential drug target for WCR.</div><div>In the present study, the structure of FDB2 was determined using the molecular replacement method. The overall FDB2 structure displayed a typical N-acetyltransferase (NAT1) conformation. Unlike other NAT1s, the active site cleft is divided into two parts by a long loop (A<sup>135</sup>MSPYPDVRKNQA<sup>147</sup>). Hydralazine, Isoniazid, and 2,4′-dibromoacetanilide were screened out as potential inhibitors of FDB2 by structure alignment. Affinity measurements by MST showed that FDB2 prefers to combine Isoniazid and Hydralazine rather than its natural substrate, 2-aminophenol. Wheat seedling infection assays showed that Isoniazid and Hydralazine suppress <em>F. pseudograminearum</em> invasion in wheat. Our study found that Hydralazine and Isoniazid have the potential to control WCR. This article provides a new idea for the application of medicine, which has serious adverse effects, on plant disease control to reduce research costs and make obsolete drugs shine with vitality.</div></div>","PeriodicalId":8779,"journal":{"name":"Biochemical and biophysical research communications","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemical and biophysical research communications","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0006291X24014293","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Fusarium pseudograminearum is the main pathogen that causes wheat crown rot (WCR), causing serious harm to wheat production. Wheat secretes Benzoxazolinones (Bxs) as fungicidins to prevent F. pseudograminearum infection. Fusarium Detoxification of Bx 2 (FDB2) can degrade Bx to non-fungitoxic N-(2-hydroxyphenyl) malonamic acid. Therefore, FDB2 may be a potential drug target for WCR.
In the present study, the structure of FDB2 was determined using the molecular replacement method. The overall FDB2 structure displayed a typical N-acetyltransferase (NAT1) conformation. Unlike other NAT1s, the active site cleft is divided into two parts by a long loop (A135MSPYPDVRKNQA147). Hydralazine, Isoniazid, and 2,4′-dibromoacetanilide were screened out as potential inhibitors of FDB2 by structure alignment. Affinity measurements by MST showed that FDB2 prefers to combine Isoniazid and Hydralazine rather than its natural substrate, 2-aminophenol. Wheat seedling infection assays showed that Isoniazid and Hydralazine suppress F. pseudograminearum invasion in wheat. Our study found that Hydralazine and Isoniazid have the potential to control WCR. This article provides a new idea for the application of medicine, which has serious adverse effects, on plant disease control to reduce research costs and make obsolete drugs shine with vitality.
期刊介绍:
Biochemical and Biophysical Research Communications is the premier international journal devoted to the very rapid dissemination of timely and significant experimental results in diverse fields of biological research. The development of the "Breakthroughs and Views" section brings the minireview format to the journal, and issues often contain collections of special interest manuscripts. BBRC is published weekly (52 issues/year).Research Areas now include: Biochemistry; biophysics; cell biology; developmental biology; immunology
; molecular biology; neurobiology; plant biology and proteomics