Tanya Sharma, Robert Y Jomphe, Dongling Zhang, Ana C Magalhaes, Michele C Loewen
{"title":"<i>Fusarium graminearum</i> Ste2 and Ste3 receptors undergo peroxidase-induced heterodimerization when expressed heterologously in <i>Saccharomyces cerevisiae</i>.","authors":"Tanya Sharma, Robert Y Jomphe, Dongling Zhang, Ana C Magalhaes, Michele C Loewen","doi":"10.1139/bcb-2024-0104","DOIUrl":null,"url":null,"abstract":"<p><p><i>Fusarium graminearum Fg</i>Ste2 and <i>Fg</i>Ste3 are G-protein-coupled receptors (GPCRs) shown to play roles in hyphal chemotropism and fungal plant pathogenesis in response to activity arising from host-secreted peroxidases. Here, we follow up on the observation that chemotropism is dependent on both <i>Fg</i>Ste2 and <i>Fg</i>Ste3 being present; testing the possibility that this might be due to formation of an <i>Fg</i>Ste2-<i>Fg</i>Ste3 heterodimer. Bioluminescence resonance energy transfer (BRET) analyses were conducted in <i>Saccharomyces cerevisiae</i>, where the addition of horse radish peroxidase (HRP) was found to increase the transfer of energy from the inducibly expressed <i>Fg</i>Ste3-Nano luciferase donor, to the constitutively expressed <i>Fg</i>Ste2-yellow fluorescent protein (YFP) acceptor, compared to controls. A partial response was also detected when an HRP-derived ligand-containing extract was enriched from <i>F. graminearum</i> spores and applied instead of HRP. In contrast, substitution with pheromones or an unrelated bovine GPCR, rhodopsin-YFP used as acceptor, eliminated all BRET responses. Interaction results were validated by affinity pulldown and receptor expression was validated by confocal immunofluorescence microscopy. Taken together these findings demonstrate the formation of HRP and HRP-derived ligand stimulated heterodimers between <i>Fg</i>Ste2 and <i>Fg</i>Ste3. Outcomes are discussed from the context of the roles of ligands and reactive oxygen species in GPCR dimerization.</p>","PeriodicalId":8775,"journal":{"name":"Biochemistry and Cell Biology","volume":" ","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemistry and Cell Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1139/bcb-2024-0104","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Fusarium graminearum FgSte2 and FgSte3 are G-protein-coupled receptors (GPCRs) shown to play roles in hyphal chemotropism and fungal plant pathogenesis in response to activity arising from host-secreted peroxidases. Here, we follow up on the observation that chemotropism is dependent on both FgSte2 and FgSte3 being present; testing the possibility that this might be due to formation of an FgSte2-FgSte3 heterodimer. Bioluminescence resonance energy transfer (BRET) analyses were conducted in Saccharomyces cerevisiae, where the addition of horse radish peroxidase (HRP) was found to increase the transfer of energy from the inducibly expressed FgSte3-Nano luciferase donor, to the constitutively expressed FgSte2-yellow fluorescent protein (YFP) acceptor, compared to controls. A partial response was also detected when an HRP-derived ligand-containing extract was enriched from F. graminearum spores and applied instead of HRP. In contrast, substitution with pheromones or an unrelated bovine GPCR, rhodopsin-YFP used as acceptor, eliminated all BRET responses. Interaction results were validated by affinity pulldown and receptor expression was validated by confocal immunofluorescence microscopy. Taken together these findings demonstrate the formation of HRP and HRP-derived ligand stimulated heterodimers between FgSte2 and FgSte3. Outcomes are discussed from the context of the roles of ligands and reactive oxygen species in GPCR dimerization.
期刊介绍:
Published since 1929, Biochemistry and Cell Biology explores every aspect of general biochemistry and includes up-to-date coverage of experimental research into cellular and molecular biology in eukaryotes, as well as review articles on topics of current interest and notes contributed by recognized international experts. Special issues each year are dedicated to expanding new areas of research in biochemistry and cell biology.