Stability characterizations of feed-based bivalent vaccine containing inactivated Streptococcus agalactiae and Aeromonas hydrophila against streptococcosis and Aeromonas infections in red hybrid tilapia (Oreochromis sp.)

IF 2.3 3区 生物学 Q3 MICROBIOLOGY
Nur Shidaa Mohd Ali, Mohamad Syazwan Ngalimat, Mohd Zamri Saad, Mohammad Noor Amal Azmai, Annas Salleh, Zarirah Zulperi, Ina Salwany Md Yasin
{"title":"Stability characterizations of feed-based bivalent vaccine containing inactivated Streptococcus agalactiae and Aeromonas hydrophila against streptococcosis and Aeromonas infections in red hybrid tilapia (Oreochromis sp.)","authors":"Nur Shidaa Mohd Ali,&nbsp;Mohamad Syazwan Ngalimat,&nbsp;Mohd Zamri Saad,&nbsp;Mohammad Noor Amal Azmai,&nbsp;Annas Salleh,&nbsp;Zarirah Zulperi,&nbsp;Ina Salwany Md Yasin","doi":"10.1007/s00203-024-04166-2","DOIUrl":null,"url":null,"abstract":"<div><p>Feed-based bivalent vaccine (FBBV) containing killed whole organism (KWO) of <i>Streptococcus agalactiae</i> and <i>Aeromonas hydrophila</i> with 10% palm oil was previously proved to improve red hybrid tilapia’s (<i>Oreochromis</i> sp.) immunity against streptococcosis and <i>Aeromonas</i> infections. This study characterized the FBBV’s stability following the preparatory process and storage. The FBBV was prepared, and the KWO’s stability was determined microscopically and molecularly. The efficacy of FBBV stored at room temperature (25 ± 2 °C) for 0, 30 and 60 days was investigated in red hybrid tilapia. The results indicated the addition of palm oil was not affecting the KWO’s structure and helping in the FBBV’s pelletization. In 1 g of FBBV contained 1.5 × 10<sup>9</sup> CFU/g of <i>S. agalactiae</i> and 4.9 × 10<sup>9</sup> CFU/g of <i>A. hydrophila</i>, respectively, even after 60 days of storage at room temperature. The KWO’s structure in FBBV was not affected following in vitro acidic tolerance analysis, as noted from light and electron microscopies. The FBBV’s carbohydrate, energy, moisture, total protein and total ash contents remained stable at 95% after 60 days of storage at room temperature, while the KWO’s concentration was slightly reduced to 83.3% for <i>S. agalactiae</i> (1.25 × 10<sup>9</sup> CFU/g) and 80.6% for <i>A. hydrophila</i> (3.85 × 10<sup>9</sup> CFU/g), respectively. Fish vaccinated with FBBV that was stored for 0, 30 and 60 days did not show any significant differences (<i>p</i> ≥ 0.05) in the relative percent survival when challenged with pathogenic <i>Streptococcus</i> spp. and <i>Aeromonas</i> spp. These findings suggested that the FBBV is a stable vaccine, which underscores its potential application as aquatic vaccines in aquaculture.</p></div>","PeriodicalId":8279,"journal":{"name":"Archives of Microbiology","volume":"206 11","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Microbiology","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1007/s00203-024-04166-2","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Feed-based bivalent vaccine (FBBV) containing killed whole organism (KWO) of Streptococcus agalactiae and Aeromonas hydrophila with 10% palm oil was previously proved to improve red hybrid tilapia’s (Oreochromis sp.) immunity against streptococcosis and Aeromonas infections. This study characterized the FBBV’s stability following the preparatory process and storage. The FBBV was prepared, and the KWO’s stability was determined microscopically and molecularly. The efficacy of FBBV stored at room temperature (25 ± 2 °C) for 0, 30 and 60 days was investigated in red hybrid tilapia. The results indicated the addition of palm oil was not affecting the KWO’s structure and helping in the FBBV’s pelletization. In 1 g of FBBV contained 1.5 × 109 CFU/g of S. agalactiae and 4.9 × 109 CFU/g of A. hydrophila, respectively, even after 60 days of storage at room temperature. The KWO’s structure in FBBV was not affected following in vitro acidic tolerance analysis, as noted from light and electron microscopies. The FBBV’s carbohydrate, energy, moisture, total protein and total ash contents remained stable at 95% after 60 days of storage at room temperature, while the KWO’s concentration was slightly reduced to 83.3% for S. agalactiae (1.25 × 109 CFU/g) and 80.6% for A. hydrophila (3.85 × 109 CFU/g), respectively. Fish vaccinated with FBBV that was stored for 0, 30 and 60 days did not show any significant differences (p ≥ 0.05) in the relative percent survival when challenged with pathogenic Streptococcus spp. and Aeromonas spp. These findings suggested that the FBBV is a stable vaccine, which underscores its potential application as aquatic vaccines in aquaculture.

Abstract Image

含有灭活无乳链球菌和嗜水气单胞菌的饲料型二价疫苗对红色杂交罗非鱼(Oreochromis sp.)链球菌病和嗜水气单胞菌感染的稳定性特征。
含有杀灭的变形链球菌和嗜水气单胞菌全生物体(KWO)以及10%棕榈油的饲料型二价疫苗(FBBV)曾被证明可提高红杂罗非鱼(Oreochromis sp.)对链球菌病和嗜水气单胞菌感染的免疫力。本研究描述了 FBBV 在制备过程和储存过程中的稳定性。制备了 FBBV,并通过显微镜和分子测定了 KWO 的稳定性。研究了在室温(25 ± 2 °C)下储存 0、30 和 60 天的 FBBV 对红色杂交罗非鱼的功效。结果表明,添加棕榈油不会影响 KWO 的结构,并有助于 FBBV 的造粒。即使在室温下贮存 60 天,1 克 FBBV 中仍分别含有 1.5 × 109 CFU/g 的 S. agalactiae 和 4.9 × 109 CFU/g 的 A. hydrophila。体外耐酸性分析结果表明,FBBV 中的 KWO 结构没有受到影响,光镜和电子显微镜也表明了这一点。在室温下储存 60 天后,FBBV 的碳水化合物、能量、水分、总蛋白和总灰分含量仍稳定在 95%,而 KWO 的浓度略有下降,对 S. agalactiae(1.25 × 109 CFU/g)的影响为 83.3%,对 A. hydrophila(3.85 × 109 CFU/g)的影响为 80.6%。用 FBBV 疫苗接种的鱼在贮存 0 天、30 天和 60 天后,受到致病性链球菌和嗜水气单胞菌的挑战时,相对存活率没有任何显著差异(p ≥ 0.05)。 这些发现表明,FBBV 是一种稳定的疫苗,这突显了其作为水产疫苗在水产养殖中的潜在应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Archives of Microbiology
Archives of Microbiology 生物-微生物学
CiteScore
4.90
自引率
3.60%
发文量
601
审稿时长
3 months
期刊介绍: Research papers must make a significant and original contribution to microbiology and be of interest to a broad readership. The results of any experimental approach that meets these objectives are welcome, particularly biochemical, molecular genetic, physiological, and/or physical investigations into microbial cells and their interactions with their environments, including their eukaryotic hosts. Mini-reviews in areas of special topical interest and papers on medical microbiology, ecology and systematics, including description of novel taxa, are also published. Theoretical papers and those that report on the analysis or ''mining'' of data are acceptable in principle if new information, interpretations, or hypotheses emerge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信