The Contribution of the Novel CLTC-VMP1 Fusion Gene to Autophagy Regulation and Energy Metabolism in Cisplatin-Resistant Osteosarcoma.

IF 5 2区 生物学 Q2 CELL BIOLOGY
Zhiwei Tao, Pingan Zou, Zhengxu Yang, Tao Xiong, Zhi Deng, Qinchan Chen
{"title":"The Contribution of the Novel CLTC-VMP1 Fusion Gene to Autophagy Regulation and Energy Metabolism in Cisplatin-Resistant Osteosarcoma.","authors":"Zhiwei Tao, Pingan Zou, Zhengxu Yang, Tao Xiong, Zhi Deng, Qinchan Chen","doi":"10.1152/ajpcell.00302.2024","DOIUrl":null,"url":null,"abstract":"<p><p>Osteosarcoma (OS) is a highly malignant tumor, and chemotherapy resistance is a major challenge in the treatment of this disease. This study aims to explore the role of the CLTC-VMP1 gene fusion in the mechanism of chemotherapy resistance in OS and investigate its molecular mechanisms in mediating energy metabolism reprogramming by regulating autophagy and apoptosis balance. Using single-cell transcriptome analysis, the heterogeneity of OS cells and their correlation with resistance to platinum drugs were revealed. Cisplatin-resistant cell lines were established in human OS cell lines for subsequent experiments. Based on transcriptomic analysis, the importance of VMP1 in chemotherapy resistance was confirmed. Lentiviral vectors overexpressing or interfering with VMP1 were used, and it was observed that inhibiting VMP1 could reverse cisplatin resistance, promote cell apoptosis, and inhibit autophagy, as well as mitochondrial respiration and glycolysis. Furthermore, the presence of CLTC-VMP1 gene fusion was validated, and its ability to regulate autophagy and apoptosis balance, promote mitochondrial respiration, and glycolysis was demonstrated. Mouse model experiments further confirmed the promoting effect of CLTC-VMP1 on tumor growth and chemotherapy resistance. In summary, the CLTC-VMP1 gene fusion mediates energy metabolism reprogramming by regulating autophagy and apoptosis balance, which promotes chemotherapy resistance in OS.</p>","PeriodicalId":7585,"journal":{"name":"American journal of physiology. Cell physiology","volume":" ","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of physiology. Cell physiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1152/ajpcell.00302.2024","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Osteosarcoma (OS) is a highly malignant tumor, and chemotherapy resistance is a major challenge in the treatment of this disease. This study aims to explore the role of the CLTC-VMP1 gene fusion in the mechanism of chemotherapy resistance in OS and investigate its molecular mechanisms in mediating energy metabolism reprogramming by regulating autophagy and apoptosis balance. Using single-cell transcriptome analysis, the heterogeneity of OS cells and their correlation with resistance to platinum drugs were revealed. Cisplatin-resistant cell lines were established in human OS cell lines for subsequent experiments. Based on transcriptomic analysis, the importance of VMP1 in chemotherapy resistance was confirmed. Lentiviral vectors overexpressing or interfering with VMP1 were used, and it was observed that inhibiting VMP1 could reverse cisplatin resistance, promote cell apoptosis, and inhibit autophagy, as well as mitochondrial respiration and glycolysis. Furthermore, the presence of CLTC-VMP1 gene fusion was validated, and its ability to regulate autophagy and apoptosis balance, promote mitochondrial respiration, and glycolysis was demonstrated. Mouse model experiments further confirmed the promoting effect of CLTC-VMP1 on tumor growth and chemotherapy resistance. In summary, the CLTC-VMP1 gene fusion mediates energy metabolism reprogramming by regulating autophagy and apoptosis balance, which promotes chemotherapy resistance in OS.

新型 CLTC-VMP1 融合基因对顺铂耐药骨肉瘤自噬调控和能量代谢的贡献
骨肉瘤(Osteosarcoma,OS)是一种高度恶性肿瘤,化疗耐药是治疗该病的一大挑战。本研究旨在探讨CLTC-VMP1基因融合在OS化疗耐药机制中的作用,并研究其通过调节自噬和凋亡平衡介导能量代谢重编程的分子机制。通过单细胞转录组分析,揭示了OS细胞的异质性及其与铂类药物耐药性的相关性。在人类 OS 细胞系中建立了顺铂耐药细胞系,用于后续实验。根据转录组分析,证实了 VMP1 在化疗耐药性中的重要性。使用过表达或干扰 VMP1 的慢病毒载体,观察到抑制 VMP1 可逆转顺铂耐药性、促进细胞凋亡、抑制自噬以及线粒体呼吸和糖酵解。此外,还验证了 CLTC-VMP1 基因融合的存在,并证明了其调节自噬和凋亡平衡、促进线粒体呼吸和糖酵解的能力。小鼠模型实验进一步证实了 CLTC-VMP1 对肿瘤生长和化疗耐药的促进作用。综上所述,CLTC-VMP1基因融合通过调节自噬和凋亡平衡介导能量代谢重编程,从而促进OS的化疗耐药性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
9.10
自引率
1.80%
发文量
252
审稿时长
1 months
期刊介绍: The American Journal of Physiology-Cell Physiology is dedicated to innovative approaches to the study of cell and molecular physiology. Contributions that use cellular and molecular approaches to shed light on mechanisms of physiological control at higher levels of organization also appear regularly. Manuscripts dealing with the structure and function of cell membranes, contractile systems, cellular organelles, and membrane channels, transporters, and pumps are encouraged. Studies dealing with integrated regulation of cellular function, including mechanisms of signal transduction, development, gene expression, cell-to-cell interactions, and the cell physiology of pathophysiological states, are also eagerly sought. Interdisciplinary studies that apply the approaches of biochemistry, biophysics, molecular biology, morphology, and immunology to the determination of new principles in cell physiology are especially welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信