Yung-Yi Chen, Jack Sullivan, Shaun Hanley, Joshua Price, Mohammad A Tariq, Luke C McIlvenna, Martin Whitham, Archana Sharma-Oates, Paul Harrison, Janet M Lord, Jon Hazeldine
{"title":"Impact of Senescent Cell-Derived Extracellular Vesicles on Innate Immune Cell Function.","authors":"Yung-Yi Chen, Jack Sullivan, Shaun Hanley, Joshua Price, Mohammad A Tariq, Luke C McIlvenna, Martin Whitham, Archana Sharma-Oates, Paul Harrison, Janet M Lord, Jon Hazeldine","doi":"10.1002/adbi.202400265","DOIUrl":null,"url":null,"abstract":"<p><p>Extracellular vesicles (EVs) are components of the senescence-associated secretory phenotype (SASP) that influence cellular functions via their cargo. Here, the interaction between EVs derived from senescent (SEVs) and non-senescent (N-SEVs) fibroblasts and the immune system is investigated. Via endocytosis, SEVs are phagocytosed by monocytes, neutrophils, and B cells. Studies with the monocytic THP-1 cell line find that pretreatment with SEVs results in a 32% (p < 0.0001) and 66% (p < 0.0001) increase in lipopolysaccharide (LPS)-induced tumor necrosis factor-alpha (TNF-α) production when compared to vehicle control or N-SEVs respectively. Interestingly, relative to vehicle control, THP-1 cells exposed to N-SEVs exhibit a 20% decrease in TNF-α secretion (p < 0.05). RNA sequencing reveals significant differences in gene expression in THP-1 cells treated with SEVs or N-SEVs, with vesicle-mediated transport and cell cycle regulation pathways featuring predominantly with N-SEV treatment, while pathways relating to SLITS/ROBO signaling, cell metabolism, and cell cycle regulation are enriched in THP-1 cells treated with SEVs. Proteomic analysis also reveals significant differences between SEV and N-SEV cargo. These results demonstrate that phagocytes and B cells uptake SEVs and drive monocytes toward a more proinflammatory phenotype upon LPS stimulation. SEVs may therefore contribute to the more proinflammatory immune response seen with aging.</p>","PeriodicalId":7234,"journal":{"name":"Advanced biology","volume":" ","pages":"e2400265"},"PeriodicalIF":3.2000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/adbi.202400265","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/23 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Extracellular vesicles (EVs) are components of the senescence-associated secretory phenotype (SASP) that influence cellular functions via their cargo. Here, the interaction between EVs derived from senescent (SEVs) and non-senescent (N-SEVs) fibroblasts and the immune system is investigated. Via endocytosis, SEVs are phagocytosed by monocytes, neutrophils, and B cells. Studies with the monocytic THP-1 cell line find that pretreatment with SEVs results in a 32% (p < 0.0001) and 66% (p < 0.0001) increase in lipopolysaccharide (LPS)-induced tumor necrosis factor-alpha (TNF-α) production when compared to vehicle control or N-SEVs respectively. Interestingly, relative to vehicle control, THP-1 cells exposed to N-SEVs exhibit a 20% decrease in TNF-α secretion (p < 0.05). RNA sequencing reveals significant differences in gene expression in THP-1 cells treated with SEVs or N-SEVs, with vesicle-mediated transport and cell cycle regulation pathways featuring predominantly with N-SEV treatment, while pathways relating to SLITS/ROBO signaling, cell metabolism, and cell cycle regulation are enriched in THP-1 cells treated with SEVs. Proteomic analysis also reveals significant differences between SEV and N-SEV cargo. These results demonstrate that phagocytes and B cells uptake SEVs and drive monocytes toward a more proinflammatory phenotype upon LPS stimulation. SEVs may therefore contribute to the more proinflammatory immune response seen with aging.