Manasa Manjunath Hegde, Pranoti Palkar, Sadhana P Mutalik, Srinivas Mutalik, Jayant Sastri Goda, B S Satish Rao
{"title":"Enhancing glioblastoma cytotoxicity through encapsulating O6-benzylguanine and temozolomide in PEGylated liposomal nanocarrier: an in vitro study.","authors":"Manasa Manjunath Hegde, Pranoti Palkar, Sadhana P Mutalik, Srinivas Mutalik, Jayant Sastri Goda, B S Satish Rao","doi":"10.1007/s13205-024-04123-2","DOIUrl":null,"url":null,"abstract":"<p><p>Glioblastoma (GBM) (grade IV glioma) is the most fatal brain tumor, with a median survival of just 14 months despite current treatments. Temozolomide (TMZ), an alkylating agent used with radiation, faces challenges such as systemic toxicity, poor absorption, and drug resistance. To enhance TMZ effectiveness, we developed poly(ethylene glycol) (PEG) liposomes co-loaded with TMZ and O6-benzylguanine (O6-BG) for targeted glioma therapy. These liposomes, prepared using the thin-layer hydration method, had an average size of 146.33 ± 6.75 nm and a negative zeta potential (-49.6 ± 3.1 mV). Drug release was slower at physiological pH, with 66.84 ± 4.62% of TMZ and 69.70 ± 2.88% of O6-BG released, indicating stability at physiological conditions. The liposomes showed significantly higher cellular uptake (p < 0.05) than the free dye. The dual drug-loaded liposomes exhibited superior cytotoxicity against U87 glioma cells, with a lower IC<sub>50</sub> value (3.99µg/mL) than the free drug combination, demonstrating enhanced anticancer efficacy. The liposome formulation induced higher apoptosis (19.42 ± 3.5%) by causing sub-G0/G1 cell cycle arrest. The novelty of our study lies in co-encapsulating TMZ and O6-BG within PEGylated liposomes, effectively overcoming drug resistance and improving targeted delivery for glioma treatment.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s13205-024-04123-2.</p>","PeriodicalId":7067,"journal":{"name":"3 Biotech","volume":"14 11","pages":"275"},"PeriodicalIF":2.6000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11499494/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"3 Biotech","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s13205-024-04123-2","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/23 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Glioblastoma (GBM) (grade IV glioma) is the most fatal brain tumor, with a median survival of just 14 months despite current treatments. Temozolomide (TMZ), an alkylating agent used with radiation, faces challenges such as systemic toxicity, poor absorption, and drug resistance. To enhance TMZ effectiveness, we developed poly(ethylene glycol) (PEG) liposomes co-loaded with TMZ and O6-benzylguanine (O6-BG) for targeted glioma therapy. These liposomes, prepared using the thin-layer hydration method, had an average size of 146.33 ± 6.75 nm and a negative zeta potential (-49.6 ± 3.1 mV). Drug release was slower at physiological pH, with 66.84 ± 4.62% of TMZ and 69.70 ± 2.88% of O6-BG released, indicating stability at physiological conditions. The liposomes showed significantly higher cellular uptake (p < 0.05) than the free dye. The dual drug-loaded liposomes exhibited superior cytotoxicity against U87 glioma cells, with a lower IC50 value (3.99µg/mL) than the free drug combination, demonstrating enhanced anticancer efficacy. The liposome formulation induced higher apoptosis (19.42 ± 3.5%) by causing sub-G0/G1 cell cycle arrest. The novelty of our study lies in co-encapsulating TMZ and O6-BG within PEGylated liposomes, effectively overcoming drug resistance and improving targeted delivery for glioma treatment.
Supplementary information: The online version contains supplementary material available at 10.1007/s13205-024-04123-2.
3 BiotechAgricultural and Biological Sciences-Agricultural and Biological Sciences (miscellaneous)
CiteScore
6.00
自引率
0.00%
发文量
314
期刊介绍:
3 Biotech publishes the results of the latest research related to the study and application of biotechnology to:
- Medicine and Biomedical Sciences
- Agriculture
- The Environment
The focus on these three technology sectors recognizes that complete Biotechnology applications often require a combination of techniques. 3 Biotech not only presents the latest developments in biotechnology but also addresses the problems and benefits of integrating a variety of techniques for a particular application. 3 Biotech will appeal to scientists and engineers in both academia and industry focused on the safe and efficient application of Biotechnology to Medicine, Agriculture and the Environment.