{"title":"Exploring patterns in older pedestrian involved crashes during nighttime","authors":"","doi":"10.1016/j.aap.2024.107815","DOIUrl":null,"url":null,"abstract":"<div><div>Nighttime crashes involving older pedestrians pose a significant safety concern due to their age-related vulnerabilities such as reduced vision and slower reaction times. This study analyzes crash data from Texas for six years (2017–2022) using Association Rules Mining (ARM) to identify patterns and associations affecting crash severity for older pedestrians aged 65–74 years and those over 74 years under varying lighting conditions. The findings reveal that high-speed limits and complex road environments significantly increase the risk of fatal or severe injuries for both age groups, particularly under inadequate lighting. Additionally, demographic factors, adverse weather conditions, and specific road features further influence crash outcomes. These insights highlight the need for interventions, including lower speed limits, enhanced street lighting, and the implementation of advanced technologies such as modern pedestrian detection systems, sensor technology, pedestrian bags, accessible pedestrian signals, to improve the safety of older pedestrians. Policymakers should leverage these insights to formulate strategies that improve road safety for older pedestrians, addressing their unique vulnerabilities in various nighttime conditions.</div></div>","PeriodicalId":6926,"journal":{"name":"Accident; analysis and prevention","volume":null,"pages":null},"PeriodicalIF":5.7000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accident; analysis and prevention","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001457524003609","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ERGONOMICS","Score":null,"Total":0}
引用次数: 0
Abstract
Nighttime crashes involving older pedestrians pose a significant safety concern due to their age-related vulnerabilities such as reduced vision and slower reaction times. This study analyzes crash data from Texas for six years (2017–2022) using Association Rules Mining (ARM) to identify patterns and associations affecting crash severity for older pedestrians aged 65–74 years and those over 74 years under varying lighting conditions. The findings reveal that high-speed limits and complex road environments significantly increase the risk of fatal or severe injuries for both age groups, particularly under inadequate lighting. Additionally, demographic factors, adverse weather conditions, and specific road features further influence crash outcomes. These insights highlight the need for interventions, including lower speed limits, enhanced street lighting, and the implementation of advanced technologies such as modern pedestrian detection systems, sensor technology, pedestrian bags, accessible pedestrian signals, to improve the safety of older pedestrians. Policymakers should leverage these insights to formulate strategies that improve road safety for older pedestrians, addressing their unique vulnerabilities in various nighttime conditions.
期刊介绍:
Accident Analysis & Prevention provides wide coverage of the general areas relating to accidental injury and damage, including the pre-injury and immediate post-injury phases. Published papers deal with medical, legal, economic, educational, behavioral, theoretical or empirical aspects of transportation accidents, as well as with accidents at other sites. Selected topics within the scope of the Journal may include: studies of human, environmental and vehicular factors influencing the occurrence, type and severity of accidents and injury; the design, implementation and evaluation of countermeasures; biomechanics of impact and human tolerance limits to injury; modelling and statistical analysis of accident data; policy, planning and decision-making in safety.