An innovative strategy for Gefitinib quantification in pharmaceutical and plasma samples using a graphene quantum dots-combined gold nanoparticles composite electrochemical sensor

IF 5.3 2区 化学 Q1 CHEMISTRY, ANALYTICAL
Jieping Cao, Yingmei Shi, Juntong Chen, Zhibin Yan, Minmin Zhang, Mingliang Jin, Lingling Shui, Zhenping Liu, Huiling Feng
{"title":"An innovative strategy for Gefitinib quantification in pharmaceutical and plasma samples using a graphene quantum dots-combined gold nanoparticles composite electrochemical sensor","authors":"Jieping Cao,&nbsp;Yingmei Shi,&nbsp;Juntong Chen,&nbsp;Zhibin Yan,&nbsp;Minmin Zhang,&nbsp;Mingliang Jin,&nbsp;Lingling Shui,&nbsp;Zhenping Liu,&nbsp;Huiling Feng","doi":"10.1007/s00604-024-06766-7","DOIUrl":null,"url":null,"abstract":"<div><p>An innovative methodology is proposed for quantifying Gefitinib (GFT) using an electrochemical sensor constructed from a composite of graphene quantum dots (GQDs) and gold nanoparticles (AuNPs). GQDs were synthesized from graphite, preserving graphene’s large surface area and excellent electron transfer capabilities while enhancing dispersibility. The combination of GQDs with AuNPs resulted in an AuNPs@GQDs composite, which was used to construct the sensor. The synthesized nanomaterials were characterized using scanning electron microscopy (SEM) and transmission electron microscopy (TEM), and the electrochemical performance of the sensor was evaluated via cyclic voltammetry (CV) and differential pulse voltammetry (DPV). Under optimized conditions, the sensor displayed a linear calibration curve for GFT detection within the range 0.01 to 10.0 µM, with a limit of detection (LOD) of 0.005 µM (S/<i>N</i> = 3). The sensor demonstrated excellent anti-interference properties and stability in tests using pharmaceutical formulations and plasma samples. Compared to chromatographic methods, the sensor exhibited similar accuracy and recovery. Its easy fabrication and high sensitivity make it a promising tool for pharmaceutical analysis and clinical therapeutic drug monitoring.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":705,"journal":{"name":"Microchimica Acta","volume":"191 11","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00604-024-06766-7.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microchimica Acta","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s00604-024-06766-7","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

An innovative methodology is proposed for quantifying Gefitinib (GFT) using an electrochemical sensor constructed from a composite of graphene quantum dots (GQDs) and gold nanoparticles (AuNPs). GQDs were synthesized from graphite, preserving graphene’s large surface area and excellent electron transfer capabilities while enhancing dispersibility. The combination of GQDs with AuNPs resulted in an AuNPs@GQDs composite, which was used to construct the sensor. The synthesized nanomaterials were characterized using scanning electron microscopy (SEM) and transmission electron microscopy (TEM), and the electrochemical performance of the sensor was evaluated via cyclic voltammetry (CV) and differential pulse voltammetry (DPV). Under optimized conditions, the sensor displayed a linear calibration curve for GFT detection within the range 0.01 to 10.0 µM, with a limit of detection (LOD) of 0.005 µM (S/N = 3). The sensor demonstrated excellent anti-interference properties and stability in tests using pharmaceutical formulations and plasma samples. Compared to chromatographic methods, the sensor exhibited similar accuracy and recovery. Its easy fabrication and high sensitivity make it a promising tool for pharmaceutical analysis and clinical therapeutic drug monitoring.

Graphical Abstract

利用石墨烯量子点-金纳米颗粒复合电化学传感器定量检测药物和血浆样品中吉非替尼的创新策略。
本文提出了一种利用石墨烯量子点(GQDs)和金纳米粒子(AuNPs)复合材料构建的电化学传感器定量检测吉非替尼(GFT)的创新方法。GQDs 由石墨合成,保留了石墨烯的大表面积和出色的电子传递能力,同时提高了分散性。将 GQDs 与 AuNPs 结合后得到 AuNPs@GQDs 复合材料,用于构建传感器。利用扫描电子显微镜(SEM)和透射电子显微镜(TEM)对合成的纳米材料进行了表征,并通过循环伏安法(CV)和差分脉冲伏安法(DPV)对传感器的电化学性能进行了评估。在优化条件下,传感器在 0.01 至 10.0 µM 范围内显示出线性 GFT 检测校准曲线,检测限为 0.005 µM(信噪比为 3)。在使用药物制剂和血浆样品进行的测试中,该传感器表现出卓越的抗干扰性能和稳定性。与色谱法相比,该传感器具有相似的准确度和回收率。该传感器易于制造,灵敏度高,是药物分析和临床治疗药物监测的理想工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Microchimica Acta
Microchimica Acta 化学-分析化学
CiteScore
9.80
自引率
5.30%
发文量
410
审稿时长
2.7 months
期刊介绍: As a peer-reviewed journal for analytical sciences and technologies on the micro- and nanoscale, Microchimica Acta has established itself as a premier forum for truly novel approaches in chemical and biochemical analysis. Coverage includes methods and devices that provide expedient solutions to the most contemporary demands in this area. Examples are point-of-care technologies, wearable (bio)sensors, in-vivo-monitoring, micro/nanomotors and materials based on synthetic biology as well as biomedical imaging and targeting.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信