{"title":"Genome-Wide Identification of COMT Gene Family in Maize and its Function in Response to Light.","authors":"Deying Lei, Yuzhang Chen, Yuan Li, Yanhong Hu, Jiwei Zhang, Licheng Wang","doi":"10.1007/s10528-024-10942-y","DOIUrl":null,"url":null,"abstract":"<p><p>Maize is a major crop, feed, and industrial material. Caffeic acid-O-methyltransferase (COMT) is a methylase closely associated with lignin biosynthesis and plant growth and resistance. In this study, we identified the COMT gene (ZmCOMT) family in maize and further analyzed its phylogenetic evolution, subcellular localization, and its function in response to light. Thirty-one ZmCOMT genes were identified in the maize genome, which were distributed across eight chromosomes and mainly clustered on chromosome 4. Most ZmCOMT proteins were predicted to localize in the cytoplasm. Ten different conserved motifs were present in most ZmCOMT proteins, and motif1, motif6, and motif7 were highly conserved and present in all ZmCOMT proteins. The photoresponsivity elements were conserved among all members, and ZmCOMT22 and ZmCOMT10 genes responsive to light. This result suggests a potential function for these two genes in lignin biosynthesis which a previous study had linked to light regulation. Jasmonic acid responsive and abscisic acid cis-acting elements were present in the promoter regions of family members, thus the family may be regulated by hormone signaling pathways of maize. In summary, ZmCOMT genes are ancient, and the highly conserved motifs may be significant in survival and evolution of maize. Furthermore, light may influence lignin biosynthesis and photosynthesis through ZmCOMT genes. This research provided theoretical basis for lignin biosynthesis of maize and the potential value of ZmCOMT22 and ZmCOMT10 genes to enhance plant photosynthesis for facing global warming.</p>","PeriodicalId":482,"journal":{"name":"Biochemical Genetics","volume":" ","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemical Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10528-024-10942-y","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Maize is a major crop, feed, and industrial material. Caffeic acid-O-methyltransferase (COMT) is a methylase closely associated with lignin biosynthesis and plant growth and resistance. In this study, we identified the COMT gene (ZmCOMT) family in maize and further analyzed its phylogenetic evolution, subcellular localization, and its function in response to light. Thirty-one ZmCOMT genes were identified in the maize genome, which were distributed across eight chromosomes and mainly clustered on chromosome 4. Most ZmCOMT proteins were predicted to localize in the cytoplasm. Ten different conserved motifs were present in most ZmCOMT proteins, and motif1, motif6, and motif7 were highly conserved and present in all ZmCOMT proteins. The photoresponsivity elements were conserved among all members, and ZmCOMT22 and ZmCOMT10 genes responsive to light. This result suggests a potential function for these two genes in lignin biosynthesis which a previous study had linked to light regulation. Jasmonic acid responsive and abscisic acid cis-acting elements were present in the promoter regions of family members, thus the family may be regulated by hormone signaling pathways of maize. In summary, ZmCOMT genes are ancient, and the highly conserved motifs may be significant in survival and evolution of maize. Furthermore, light may influence lignin biosynthesis and photosynthesis through ZmCOMT genes. This research provided theoretical basis for lignin biosynthesis of maize and the potential value of ZmCOMT22 and ZmCOMT10 genes to enhance plant photosynthesis for facing global warming.
期刊介绍:
Biochemical Genetics welcomes original manuscripts that address and test clear scientific hypotheses, are directed to a broad scientific audience, and clearly contribute to the advancement of the field through the use of sound sampling or experimental design, reliable analytical methodologies and robust statistical analyses.
Although studies focusing on particular regions and target organisms are welcome, it is not the journal’s goal to publish essentially descriptive studies that provide results with narrow applicability, or are based on very small samples or pseudoreplication.
Rather, Biochemical Genetics welcomes review articles that go beyond summarizing previous publications and create added value through the systematic analysis and critique of the current state of knowledge or by conducting meta-analyses.
Methodological articles are also within the scope of Biological Genetics, particularly when new laboratory techniques or computational approaches are fully described and thoroughly compared with the existing benchmark methods.
Biochemical Genetics welcomes articles on the following topics: Genomics; Proteomics; Population genetics; Phylogenetics; Metagenomics; Microbial genetics; Genetics and evolution of wild and cultivated plants; Animal genetics and evolution; Human genetics and evolution; Genetic disorders; Genetic markers of diseases; Gene technology and therapy; Experimental and analytical methods; Statistical and computational methods.