{"title":"Midseason draining of paddy water suppresses microbial arsenic methylation in soil and alleviates rice straighthead disease.","authors":"Axiang Gao, Chuan Chen, Zhenguo Tian, Wanying Qu, Peng Wang, Fang-Jie Zhao","doi":"10.1016/j.scitotenv.2024.177068","DOIUrl":null,"url":null,"abstract":"<p><p>Arsenic (As) methylation is an important component of As biogeochemical cycle. Microbial As methylation is enhanced under anoxic conditions in paddy soil, producing dimethylarsenate (DMA) which can cause physiological straighthead disease in rice. We conducted field experiments at two sites to test the effect of midseason draining of paddy water on microbial As methylation and the incidence of straighthead disease. Compared to continuous flooding, midseason draining increased soil Eh, decreased the abundances of microbial genes for arsenate reduction (arsC and arrA) and arsenite methylation (arsM), and lowered the concentrations of both inorganic As and DMA in soil porewater. Draining shifted microbial composition, resulting in decreases in the relative abundance of 17-132 amplicon sequence variants. Draining decreased the accumulation of DMA in rice husk and of inorganic As and DMA in rice grain, decreased the incidence of straighthead disease, and increased grain yield by 20-45 %. Further experiments were conducted at eight field sites to assess the effect of midseason draining in a split field design. Draining decreased husk DMA concentration by 40-65 % and increased grain yield by 25-209 %. This study demonstrates that midseason draining can effectively suppress microbial As methylation and alleviate rice straighthead disease, benefiting both grain yield and safety.</p>","PeriodicalId":422,"journal":{"name":"Science of the Total Environment","volume":" ","pages":"177068"},"PeriodicalIF":8.2000,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science of the Total Environment","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.scitotenv.2024.177068","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/22 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Arsenic (As) methylation is an important component of As biogeochemical cycle. Microbial As methylation is enhanced under anoxic conditions in paddy soil, producing dimethylarsenate (DMA) which can cause physiological straighthead disease in rice. We conducted field experiments at two sites to test the effect of midseason draining of paddy water on microbial As methylation and the incidence of straighthead disease. Compared to continuous flooding, midseason draining increased soil Eh, decreased the abundances of microbial genes for arsenate reduction (arsC and arrA) and arsenite methylation (arsM), and lowered the concentrations of both inorganic As and DMA in soil porewater. Draining shifted microbial composition, resulting in decreases in the relative abundance of 17-132 amplicon sequence variants. Draining decreased the accumulation of DMA in rice husk and of inorganic As and DMA in rice grain, decreased the incidence of straighthead disease, and increased grain yield by 20-45 %. Further experiments were conducted at eight field sites to assess the effect of midseason draining in a split field design. Draining decreased husk DMA concentration by 40-65 % and increased grain yield by 25-209 %. This study demonstrates that midseason draining can effectively suppress microbial As methylation and alleviate rice straighthead disease, benefiting both grain yield and safety.
期刊介绍:
The Science of the Total Environment is an international journal dedicated to scientific research on the environment and its interaction with humanity. It covers a wide range of disciplines and seeks to publish innovative, hypothesis-driven, and impactful research that explores the entire environment, including the atmosphere, lithosphere, hydrosphere, biosphere, and anthroposphere.
The journal's updated Aims & Scope emphasizes the importance of interdisciplinary environmental research with broad impact. Priority is given to studies that advance fundamental understanding and explore the interconnectedness of multiple environmental spheres. Field studies are preferred, while laboratory experiments must demonstrate significant methodological advancements or mechanistic insights with direct relevance to the environment.