Behaviour of M. aeruginosa-Microplastic composite pollutants in coagulation and sludge storage.

IF 8.2 1区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES
Science of the Total Environment Pub Date : 2024-12-10 Epub Date: 2024-10-29 DOI:10.1016/j.scitotenv.2024.177176
Zehui Yu, Xuqi Li, Zheng Li, Zhaoyu Wang, Yan Jin, Hangzhou Xu
{"title":"Behaviour of M. aeruginosa-Microplastic composite pollutants in coagulation and sludge storage.","authors":"Zehui Yu, Xuqi Li, Zheng Li, Zhaoyu Wang, Yan Jin, Hangzhou Xu","doi":"10.1016/j.scitotenv.2024.177176","DOIUrl":null,"url":null,"abstract":"<p><p>Microcystis aeruginosa (M. aeruginosa) blooms and microplastics pollution have been major global water pollution concern in lakes and reservoirs. In this study, the behaviour of M. aeruginosa-microplastic composite pollutants in inorganic coagulant (PACl) and organic coagulant (HTCC) treatment was investigated. Results showed that, in coagulation stage, the dissolved extracellular polymers secreted by M. aeruginosa could promote the adhesion of microplastics to algae, so as to combine them into the algal flocs, thus improving the sedimentation and removal efficiency of microplastics. On the other hand, whilst microplastics increased the size of algal flocs in PACl coagulation and improved algal removal efficiency, they had the opposite effect on HTCC coagulation. And the removal of algal metabolites including microcystins were improved by the presence of microplastics. In sludge storage stage, the oxidative and mechanical damage effects of microplastics promoted the rupture of M. aeruginosa cells in PACl sludge but not in HTCC sludge, which mean more potential risks in recycling of PACl sludge water. Besides, microplastics promoted the proliferation of beneficial bacteria such as Poterioochromonas and Coccomyxa, which contributed to the control of sludge pollution.</p>","PeriodicalId":422,"journal":{"name":"Science of the Total Environment","volume":" ","pages":"177176"},"PeriodicalIF":8.2000,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science of the Total Environment","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.scitotenv.2024.177176","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/29 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Microcystis aeruginosa (M. aeruginosa) blooms and microplastics pollution have been major global water pollution concern in lakes and reservoirs. In this study, the behaviour of M. aeruginosa-microplastic composite pollutants in inorganic coagulant (PACl) and organic coagulant (HTCC) treatment was investigated. Results showed that, in coagulation stage, the dissolved extracellular polymers secreted by M. aeruginosa could promote the adhesion of microplastics to algae, so as to combine them into the algal flocs, thus improving the sedimentation and removal efficiency of microplastics. On the other hand, whilst microplastics increased the size of algal flocs in PACl coagulation and improved algal removal efficiency, they had the opposite effect on HTCC coagulation. And the removal of algal metabolites including microcystins were improved by the presence of microplastics. In sludge storage stage, the oxidative and mechanical damage effects of microplastics promoted the rupture of M. aeruginosa cells in PACl sludge but not in HTCC sludge, which mean more potential risks in recycling of PACl sludge water. Besides, microplastics promoted the proliferation of beneficial bacteria such as Poterioochromonas and Coccomyxa, which contributed to the control of sludge pollution.

铜绿微塑料复合污染物在混凝和污泥储存过程中的行为。
铜绿微囊藻(M. aeruginosa)藻华和微塑料污染一直是全球湖泊和水库水污染的主要问题。本研究调查了铜绿微囊藻-微塑料复合污染物在无机混凝剂(PACl)和有机混凝剂(HTCC)处理过程中的表现。结果表明,在混凝阶段,铜绿微囊藻分泌的溶解性胞外聚合物可促进微塑料与藻类的粘附,使其结合成藻絮体,从而提高微塑料的沉降和去除效率。另一方面,微塑料在 PACl 混凝过程中增加了藻类絮团的体积,提高了藻类去除效率,但在 HTCC 混凝过程中却产生了相反的效果。微塑料的存在提高了对包括微囊藻毒素在内的藻类代谢物的去除率。在污泥贮存阶段,微塑料的氧化作用和机械损伤作用促进了 PACl 污泥中铜绿微囊藻细胞的破裂,而在 HTCC 污泥中则没有,这意味着 PACl 污泥水的循环利用存在更大的潜在风险。此外,微塑料还促进了有益菌(如 Poterioochromonas 和 Coccomyxa)的增殖,有助于控制污泥污染。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Science of the Total Environment
Science of the Total Environment 环境科学-环境科学
CiteScore
17.60
自引率
10.20%
发文量
8726
审稿时长
2.4 months
期刊介绍: The Science of the Total Environment is an international journal dedicated to scientific research on the environment and its interaction with humanity. It covers a wide range of disciplines and seeks to publish innovative, hypothesis-driven, and impactful research that explores the entire environment, including the atmosphere, lithosphere, hydrosphere, biosphere, and anthroposphere. The journal's updated Aims & Scope emphasizes the importance of interdisciplinary environmental research with broad impact. Priority is given to studies that advance fundamental understanding and explore the interconnectedness of multiple environmental spheres. Field studies are preferred, while laboratory experiments must demonstrate significant methodological advancements or mechanistic insights with direct relevance to the environment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信