Field-deployable pencil lead-based electrochemical cell for the determination of the emerging contaminant and antidepressant drug venlafaxine in wastewater.
Maria Cerrato-Alvarez, Pablo Rioboó-Legaspi, Estefania Costa-Rama, M Teresa Fernández-Abedul
{"title":"Field-deployable pencil lead-based electrochemical cell for the determination of the emerging contaminant and antidepressant drug venlafaxine in wastewater.","authors":"Maria Cerrato-Alvarez, Pablo Rioboó-Legaspi, Estefania Costa-Rama, M Teresa Fernández-Abedul","doi":"10.1016/j.bios.2024.116851","DOIUrl":null,"url":null,"abstract":"<p><p>Screening and quantification of emerging contaminants in water is of enormous relevance due to its scarcity and harmful effects on aquatic life and human health. We present a simple and cost-effective electrochemical cell for determination of the antidepressant venlafaxine, an emerging contaminant included in the EU Watch list 2022. The cell consists of pencil leads used as electrodes and a microcentrifuge tube. Modification of the working electrode with carbon nanomaterials improved the signal. Cell-related (e.g., type of pencil leads or electroactive area) as well as experimental (e.g., pH, accumulation potential and time, and scan rate) parameters were thoroughly optimized. The adsorptive nature of venlafaxine process allowed the use of an adsorptive stripping square wave voltammetry methodology to increase the sensitivity. Under optimized variables, a linear range from 0.8 to 10 μmol L<sup>-1</sup> with a correlation coefficient of 0.996, a sensitivity of 1.48 μmol L<sup>-1</sup>, a LOD of 0.4 μmol L<sup>-1</sup> and a RSD of 2.4 % were achieved. Selectivity was also studied, especially with respect to the main metabolite, o-desmethylvenlafaxine. The methodology distinguishes its signal from that of the main compound, allowing its determination. A similar linear range was obtained for the metabolite, with a LOD of 0.6 μmol L<sup>-1</sup>. The platform developed was applied for venlafaxine quantification in spiked wastewaters from the Febros plant in Portugal, obtaining satisfactory recoveries. Furthermore, the versatility of pencil leads made it possible to combine them with modified paper for sampling and buffering in order to decentralize the determination, showing promising results.</p>","PeriodicalId":10,"journal":{"name":"ACS Central Science","volume":null,"pages":null},"PeriodicalIF":12.7000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Central Science","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1016/j.bios.2024.116851","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/16 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Screening and quantification of emerging contaminants in water is of enormous relevance due to its scarcity and harmful effects on aquatic life and human health. We present a simple and cost-effective electrochemical cell for determination of the antidepressant venlafaxine, an emerging contaminant included in the EU Watch list 2022. The cell consists of pencil leads used as electrodes and a microcentrifuge tube. Modification of the working electrode with carbon nanomaterials improved the signal. Cell-related (e.g., type of pencil leads or electroactive area) as well as experimental (e.g., pH, accumulation potential and time, and scan rate) parameters were thoroughly optimized. The adsorptive nature of venlafaxine process allowed the use of an adsorptive stripping square wave voltammetry methodology to increase the sensitivity. Under optimized variables, a linear range from 0.8 to 10 μmol L-1 with a correlation coefficient of 0.996, a sensitivity of 1.48 μmol L-1, a LOD of 0.4 μmol L-1 and a RSD of 2.4 % were achieved. Selectivity was also studied, especially with respect to the main metabolite, o-desmethylvenlafaxine. The methodology distinguishes its signal from that of the main compound, allowing its determination. A similar linear range was obtained for the metabolite, with a LOD of 0.6 μmol L-1. The platform developed was applied for venlafaxine quantification in spiked wastewaters from the Febros plant in Portugal, obtaining satisfactory recoveries. Furthermore, the versatility of pencil leads made it possible to combine them with modified paper for sampling and buffering in order to decentralize the determination, showing promising results.
期刊介绍:
ACS Central Science publishes significant primary reports on research in chemistry and allied fields where chemical approaches are pivotal. As the first fully open-access journal by the American Chemical Society, it covers compelling and important contributions to the broad chemistry and scientific community. "Central science," a term popularized nearly 40 years ago, emphasizes chemistry's central role in connecting physical and life sciences, and fundamental sciences with applied disciplines like medicine and engineering. The journal focuses on exceptional quality articles, addressing advances in fundamental chemistry and interdisciplinary research.