Xuchun Qiu , Jie Tang , Yibing Zhang , Ming Li , Kun Chen , Yanhong Shi , Xiangyang Wu
{"title":"A transcriptomics-based analysis of mechanisms involved in the neurobehavioral effects of 6PPD-quinone on early life stages of zebrafish","authors":"Xuchun Qiu , Jie Tang , Yibing Zhang , Ming Li , Kun Chen , Yanhong Shi , Xiangyang Wu","doi":"10.1016/j.aquatox.2024.107129","DOIUrl":null,"url":null,"abstract":"<div><div>As an emerging pollutant frequently detected in aquatic ecosystems, the toxicity of N-(1,3-dimethylbutyl)-N’-phenyl-p-phenylenediamine-quinone (6PPD-quinone) on fish has been confirmed, but insight into the mechanisms underlying those adverse effects is still limited. Thus, we exposed zebrafish embryos to 6PPD-quinone at 0, 0.25, 2.5, and 25 μg/L until 120 h post-fertilization (hpf), and investigated the variations in their development, behavior, monoamine neurotransmitter levels, and transcriptional profile. Exposure to 6PPD-quinone notably elevated the heart rate of zebrafish at 48 hpf (at 2.5 and 25 μg/L) and 72 hpf (at 0.25, 2.5, and 25 μg/L). In the dark-light transition test, the locomotor activity of zebrafish larvae exposed to 6PPD-quinone significantly increased, especially in the dark periods. Exposure to 6PPD-quinone also altered the dopamine level and its turnover in zebrafish, which exhibited significant correlations to their locomotor activity. RNA sequencing identified 394 differentially expressed genes (DEGs), most of which have the molecular function of binding and catalytic activity. Five DEGs were predicted as the key driver genes in the protein-protein interaction networks associated with circadian rhythm (i.e., <em>npas2</em>), protein processing in endoplasmic reticulum (i.e., <em>hsp90b1</em> and <em>pdia4</em>), and estrogen signaling pathway (i.e., <em>hsp90aa1.1</em> and <em>hsp90aa1.2</em>). Our findings provide more insights into mechanisms underlying the toxicity of 6PPD-quinone to teleosts and highlight the necessity to assess its potential risks to aquatic ecosystems.</div></div>","PeriodicalId":248,"journal":{"name":"Aquatic Toxicology","volume":"276 ","pages":"Article 107129"},"PeriodicalIF":4.1000,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aquatic Toxicology","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166445X24002996","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MARINE & FRESHWATER BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
As an emerging pollutant frequently detected in aquatic ecosystems, the toxicity of N-(1,3-dimethylbutyl)-N’-phenyl-p-phenylenediamine-quinone (6PPD-quinone) on fish has been confirmed, but insight into the mechanisms underlying those adverse effects is still limited. Thus, we exposed zebrafish embryos to 6PPD-quinone at 0, 0.25, 2.5, and 25 μg/L until 120 h post-fertilization (hpf), and investigated the variations in their development, behavior, monoamine neurotransmitter levels, and transcriptional profile. Exposure to 6PPD-quinone notably elevated the heart rate of zebrafish at 48 hpf (at 2.5 and 25 μg/L) and 72 hpf (at 0.25, 2.5, and 25 μg/L). In the dark-light transition test, the locomotor activity of zebrafish larvae exposed to 6PPD-quinone significantly increased, especially in the dark periods. Exposure to 6PPD-quinone also altered the dopamine level and its turnover in zebrafish, which exhibited significant correlations to their locomotor activity. RNA sequencing identified 394 differentially expressed genes (DEGs), most of which have the molecular function of binding and catalytic activity. Five DEGs were predicted as the key driver genes in the protein-protein interaction networks associated with circadian rhythm (i.e., npas2), protein processing in endoplasmic reticulum (i.e., hsp90b1 and pdia4), and estrogen signaling pathway (i.e., hsp90aa1.1 and hsp90aa1.2). Our findings provide more insights into mechanisms underlying the toxicity of 6PPD-quinone to teleosts and highlight the necessity to assess its potential risks to aquatic ecosystems.
期刊介绍:
Aquatic Toxicology publishes significant contributions that increase the understanding of the impact of harmful substances (including natural and synthetic chemicals) on aquatic organisms and ecosystems.
Aquatic Toxicology considers both laboratory and field studies with a focus on marine/ freshwater environments. We strive to attract high quality original scientific papers, critical reviews and expert opinion papers in the following areas: Effects of harmful substances on molecular, cellular, sub-organismal, organismal, population, community, and ecosystem level; Toxic Mechanisms; Genetic disturbances, transgenerational effects, behavioral and adaptive responses; Impacts of harmful substances on structure, function of and services provided by aquatic ecosystems; Mixture toxicity assessment; Statistical approaches to predict exposure to and hazards of contaminants
The journal also considers manuscripts in other areas, such as the development of innovative concepts, approaches, and methodologies, which promote the wider application of toxicological datasets to the protection of aquatic environments and inform ecological risk assessments and decision making by relevant authorities.