Dorothy D Sweet, Sara B Tirado, Julian Cooper, Nathan M Springer, Cory D Hirsch, Candice N Hirsch
{"title":"Temporally resolved growth patterns reveal novel information about the polygenic nature of complex quantitative traits.","authors":"Dorothy D Sweet, Sara B Tirado, Julian Cooper, Nathan M Springer, Cory D Hirsch, Candice N Hirsch","doi":"10.1111/tpj.17092","DOIUrl":null,"url":null,"abstract":"<p><p>Plant height can be an indicator of plant health across environments and used to identify superior genotypes. Typically plant height is measured at a single timepoint when plants reach terminal height. Evaluating plant height using unoccupied aerial vehicles allows for measurements throughout the growing season, facilitating a better understanding of plant-environment interactions and the genetic basis of this complex trait. To assess variation throughout development, plant height data was collected from planting until terminal height at anthesis (14 flights 2018, 27 in 2019, 12 in 2020, and 11 in 2021) for a panel of ~500 diverse maize inbred lines. The percent variance explained in plant height throughout the season was significantly explained by genotype (9-48%), year (4-52%), and genotype-by-year interactions (14-36%) to varying extents throughout development. Genome-wide association studies revealed 717 significant single nucleotide polymorphisms associated with plant height and growth rate at different parts of the growing season specific to certain phases of vegetative growth. When plant height growth curves were compared to growth curves estimated from canopy cover, greater Fréchet distance stability was observed in plant height growth curves than for canopy cover. This indicated canopy cover may be more useful for understanding environmental modulation of overall plant growth and plant height better for understanding genotypic modulation of overall plant growth. This study demonstrated that substantial information can be gained from high temporal resolution data to understand how plants differentially interact with the environment and can enhance our understanding of the genetic basis of complex polygenic traits.</p>","PeriodicalId":233,"journal":{"name":"The Plant Journal","volume":" ","pages":""},"PeriodicalIF":6.2000,"publicationDate":"2024-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Plant Journal","FirstCategoryId":"2","ListUrlMain":"https://doi.org/10.1111/tpj.17092","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Plant height can be an indicator of plant health across environments and used to identify superior genotypes. Typically plant height is measured at a single timepoint when plants reach terminal height. Evaluating plant height using unoccupied aerial vehicles allows for measurements throughout the growing season, facilitating a better understanding of plant-environment interactions and the genetic basis of this complex trait. To assess variation throughout development, plant height data was collected from planting until terminal height at anthesis (14 flights 2018, 27 in 2019, 12 in 2020, and 11 in 2021) for a panel of ~500 diverse maize inbred lines. The percent variance explained in plant height throughout the season was significantly explained by genotype (9-48%), year (4-52%), and genotype-by-year interactions (14-36%) to varying extents throughout development. Genome-wide association studies revealed 717 significant single nucleotide polymorphisms associated with plant height and growth rate at different parts of the growing season specific to certain phases of vegetative growth. When plant height growth curves were compared to growth curves estimated from canopy cover, greater Fréchet distance stability was observed in plant height growth curves than for canopy cover. This indicated canopy cover may be more useful for understanding environmental modulation of overall plant growth and plant height better for understanding genotypic modulation of overall plant growth. This study demonstrated that substantial information can be gained from high temporal resolution data to understand how plants differentially interact with the environment and can enhance our understanding of the genetic basis of complex polygenic traits.
期刊介绍:
Publishing the best original research papers in all key areas of modern plant biology from the world"s leading laboratories, The Plant Journal provides a dynamic forum for this ever growing international research community.
Plant science research is now at the forefront of research in the biological sciences, with breakthroughs in our understanding of fundamental processes in plants matching those in other organisms. The impact of molecular genetics and the availability of model and crop species can be seen in all aspects of plant biology. For publication in The Plant Journal the research must provide a highly significant new contribution to our understanding of plants and be of general interest to the plant science community.