How the Spacer Influences the Stability of 2D Perovskites?

IF 10.7 2区 材料科学 Q1 CHEMISTRY, PHYSICAL
Xinying Gao, Yilei Wu, Yehui Zhang, Xinyu Chen, Zhilong Song, Tingbo Zhang, Qianglong Fang, Qun Ji, Ming-Gang Ju, Jinlan Wang
{"title":"How the Spacer Influences the Stability of 2D Perovskites?","authors":"Xinying Gao, Yilei Wu, Yehui Zhang, Xinyu Chen, Zhilong Song, Tingbo Zhang, Qianglong Fang, Qun Ji, Ming-Gang Ju, Jinlan Wang","doi":"10.1002/smtd.202401172","DOIUrl":null,"url":null,"abstract":"<p><p>Two-dimensional lead halide perovskites (2D HPs) represent as an emerging class of materials given their tunable optoelectronic properties and long-term stability in perovskite solar cells. However, the ever-growing field of optoelectronic devices using 2D HPs requires fundamental understanding of the influence of the spacer on the physiochemical properties and stability of perovskites as well as establish which cation properties are closely related to suppress the halogen ion mobility. This study focuses on investigating the influence of organic spacers with intrinsic properties (e.g., rigidity and flexibility, special groups) and variations of material dimensions on the stability of halogen ions and inorganic frameworks in 2D HPs. It is found that the perovskite structure composed of rigidity molecules owns better stability of halogen ion and inorganic framework than that of flexible molecules. The stability of ions exhibits a negative correlation with the dimensions of perovskite. More importantly, a simple descriptor for measuring the stability of halogen ions in 2D HPs is constructed. By causal discovery algorithms with more physical and chemical significance, the Kappa shape index, number of rotatable bonds, and aromatic carbocycles in organic spacers are identified as causal and important features for the stability of halogen ions in 2D HPs.</p>","PeriodicalId":229,"journal":{"name":"Small Methods","volume":" ","pages":"e2401172"},"PeriodicalIF":10.7000,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small Methods","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smtd.202401172","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Two-dimensional lead halide perovskites (2D HPs) represent as an emerging class of materials given their tunable optoelectronic properties and long-term stability in perovskite solar cells. However, the ever-growing field of optoelectronic devices using 2D HPs requires fundamental understanding of the influence of the spacer on the physiochemical properties and stability of perovskites as well as establish which cation properties are closely related to suppress the halogen ion mobility. This study focuses on investigating the influence of organic spacers with intrinsic properties (e.g., rigidity and flexibility, special groups) and variations of material dimensions on the stability of halogen ions and inorganic frameworks in 2D HPs. It is found that the perovskite structure composed of rigidity molecules owns better stability of halogen ion and inorganic framework than that of flexible molecules. The stability of ions exhibits a negative correlation with the dimensions of perovskite. More importantly, a simple descriptor for measuring the stability of halogen ions in 2D HPs is constructed. By causal discovery algorithms with more physical and chemical significance, the Kappa shape index, number of rotatable bonds, and aromatic carbocycles in organic spacers are identified as causal and important features for the stability of halogen ions in 2D HPs.

间隔物如何影响二维过氧化物的稳定性?
二维卤化铅包晶石(2D HPs)具有可调的光电特性和在包晶石太阳能电池中的长期稳定性,是一类新兴的材料。然而,使用二维卤化铅的光电设备领域不断发展,需要从根本上了解间隔物对包晶石的理化性质和稳定性的影响,并确定哪些阳离子性质与抑制卤素离子迁移率密切相关。本研究重点考察了具有内在性质(如刚度和柔度、特殊基团)的有机间隔物以及材料尺寸变化对二维高纯度卤素离子和无机框架稳定性的影响。研究发现,与柔性分子相比,由刚性分子组成的包晶结构具有更好的卤离子和无机框架稳定性。离子的稳定性与包晶的尺寸呈负相关。更重要的是,我们构建了一种简单的描述符来测量二维高纯度卤素离子的稳定性。通过更具物理和化学意义的因果发现算法,Kappa形状指数、可旋转键的数量以及有机间隔物中的芳香碳环被确定为二维高纯度卤素离子稳定性的重要因果特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Small Methods
Small Methods Materials Science-General Materials Science
CiteScore
17.40
自引率
1.60%
发文量
347
期刊介绍: Small Methods is a multidisciplinary journal that publishes groundbreaking research on methods relevant to nano- and microscale research. It welcomes contributions from the fields of materials science, biomedical science, chemistry, and physics, showcasing the latest advancements in experimental techniques. With a notable 2022 Impact Factor of 12.4 (Journal Citation Reports, Clarivate Analytics, 2023), Small Methods is recognized for its significant impact on the scientific community. The online ISSN for Small Methods is 2366-9608.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信