Using eDNA to Supplement Population Genetic Analyses for Cryptic Marine Species: Identifying Population Boundaries for Alaska Harbour Porpoises.

IF 4.5 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Kim M Parsons, Samuel A May, Zachary Gold, Marilyn Dahlheim, Christine Gabriele, Janice M Straley, John R Moran, Kimberly Goetz, Alexandre N Zerbini, Linda Park, Phillip A Morin
{"title":"Using eDNA to Supplement Population Genetic Analyses for Cryptic Marine Species: Identifying Population Boundaries for Alaska Harbour Porpoises.","authors":"Kim M Parsons, Samuel A May, Zachary Gold, Marilyn Dahlheim, Christine Gabriele, Janice M Straley, John R Moran, Kimberly Goetz, Alexandre N Zerbini, Linda Park, Phillip A Morin","doi":"10.1111/mec.17563","DOIUrl":null,"url":null,"abstract":"<p><p>Isolation by distance and biogeographical boundaries define patterns of population genetic structure for harbour porpoise along the Pacific coast from California to British Columbia. Until recently, inadequate sample sizes in many regions constrained efforts to characterise population genetic structure throughout the coastal waters of Alaska. Here, tissue samples from beachcast strandings and fisheries bycatch were supplemented with targeted environmental DNA (eDNA) samples in key regions of Alaska coastal and inland waters. Using a geographically explicit, hierarchical approach, we examined the genetic structure of Alaska harbour porpoises, using both mitochondrial DNA (mtDNA) sequence data and multilocus SNP genotypes. Despite a lack of evidence of genetic differentiation from nuclear SNP loci, patterns of relatedness and genetic differentiation from mtDNA suggest natal philopatry at multiple geographic scales, with limited gene flow among sites possibly mediated by male dispersal. A priori clustering of sampled areas at an intermediate scale (eastern and western Bering Sea, Gulf of Alaska and Southeast Alaska) best explained the genetic variance (12.37%) among regions. In addition, mtDNA differentiation between the Gulf of Alaska and eastern Bering Sea, and among regions within the Gulf of Alaska, indicated significant genetic structuring of harbour porpoise populations in Southeast Alaska. The targeted collection of eDNA samples from strata within Southeast Alaska was key for elevating the statistical power of our mtDNA dataset, and findings indicate limited dispersal between neighbouring strata within coastal and inland waters. These results provide evidence supporting a population boundary within the currently recognised Southeast Alaska Stock. Together, these findings will prove useful for ongoing management efforts to reduce fisheries conflict and conserve genetic diversity in this iconic coastal species.</p>","PeriodicalId":210,"journal":{"name":"Molecular Ecology","volume":" ","pages":"e17563"},"PeriodicalIF":4.5000,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Ecology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/mec.17563","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Isolation by distance and biogeographical boundaries define patterns of population genetic structure for harbour porpoise along the Pacific coast from California to British Columbia. Until recently, inadequate sample sizes in many regions constrained efforts to characterise population genetic structure throughout the coastal waters of Alaska. Here, tissue samples from beachcast strandings and fisheries bycatch were supplemented with targeted environmental DNA (eDNA) samples in key regions of Alaska coastal and inland waters. Using a geographically explicit, hierarchical approach, we examined the genetic structure of Alaska harbour porpoises, using both mitochondrial DNA (mtDNA) sequence data and multilocus SNP genotypes. Despite a lack of evidence of genetic differentiation from nuclear SNP loci, patterns of relatedness and genetic differentiation from mtDNA suggest natal philopatry at multiple geographic scales, with limited gene flow among sites possibly mediated by male dispersal. A priori clustering of sampled areas at an intermediate scale (eastern and western Bering Sea, Gulf of Alaska and Southeast Alaska) best explained the genetic variance (12.37%) among regions. In addition, mtDNA differentiation between the Gulf of Alaska and eastern Bering Sea, and among regions within the Gulf of Alaska, indicated significant genetic structuring of harbour porpoise populations in Southeast Alaska. The targeted collection of eDNA samples from strata within Southeast Alaska was key for elevating the statistical power of our mtDNA dataset, and findings indicate limited dispersal between neighbouring strata within coastal and inland waters. These results provide evidence supporting a population boundary within the currently recognised Southeast Alaska Stock. Together, these findings will prove useful for ongoing management efforts to reduce fisheries conflict and conserve genetic diversity in this iconic coastal species.

利用 eDNA 补充隐性海洋物种的种群遗传分析:确定阿拉斯加港湾鼠海豚的种群边界。
距离隔离和生物地理边界决定了从加利福尼亚到不列颠哥伦比亚的太平洋沿岸港湾鼠海豚种群遗传结构的模式。直到最近,由于许多地区的样本量不足,限制了对整个阿拉斯加沿岸水域种群遗传结构特征的描述。在阿拉斯加沿岸和内陆水域的主要区域,对海滩搁浅和渔业副渔获物的组织样本进行了有针对性的环境 DNA(eDNA)样本补充。我们采用地理明确的分层方法,利用线粒体 DNA(mtDNA)序列数据和多焦点 SNP 基因型研究了阿拉斯加港湾鼠海豚的遗传结构。尽管核SNP位点缺乏遗传分化的证据,但mtDNA的亲缘关系和遗传分化模式表明,在多个地理尺度上存在产地亲缘关系,不同地点之间的基因流动有限,这可能是由雄性江豚的散布引起的。在中间尺度(白令海东部和西部、阿拉斯加湾和阿拉斯加东南部)上对采样区域进行先验聚类最能解释区域间的遗传变异(12.37%)。此外,阿拉斯加湾和白令海东部之间以及阿拉斯加湾内各区域之间的 mtDNA 差异表明,阿拉斯加东南部的港湾鼠海豚种群具有显著的遗传结构。有针对性地收集阿拉斯加东南部各层的 eDNA 样本是提高 mtDNA 数据集统计能力的关键,研究结果表明,沿海和内陆水域相邻层之间的扩散有限。这些结果为目前公认的阿拉斯加东南种群的种群边界提供了证据。总之,这些发现将被证明有助于当前的管理工作,以减少渔业冲突并保护这一标志性沿海物种的遗传多样性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecular Ecology
Molecular Ecology 生物-进化生物学
CiteScore
8.40
自引率
10.20%
发文量
472
审稿时长
1 months
期刊介绍: Molecular Ecology publishes papers that utilize molecular genetic techniques to address consequential questions in ecology, evolution, behaviour and conservation. Studies may employ neutral markers for inference about ecological and evolutionary processes or examine ecologically important genes and their products directly. We discourage papers that are primarily descriptive and are relevant only to the taxon being studied. Papers reporting on molecular marker development, molecular diagnostics, barcoding, or DNA taxonomy, or technical methods should be re-directed to our sister journal, Molecular Ecology Resources. Likewise, papers with a strongly applied focus should be submitted to Evolutionary Applications. Research areas of interest to Molecular Ecology include: * population structure and phylogeography * reproductive strategies * relatedness and kin selection * sex allocation * population genetic theory * analytical methods development * conservation genetics * speciation genetics * microbial biodiversity * evolutionary dynamics of QTLs * ecological interactions * molecular adaptation and environmental genomics * impact of genetically modified organisms
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信