Green Advances in Wet Finishing Methods and Nanoparticles for Daily Textiles.

IF 4.2 3区 化学 Q2 POLYMER SCIENCE
Antonella Patti
{"title":"Green Advances in Wet Finishing Methods and Nanoparticles for Daily Textiles.","authors":"Antonella Patti","doi":"10.1002/marc.202400636","DOIUrl":null,"url":null,"abstract":"<p><p>This work presented an overview of greener technologies for realizing everyday fabrics with enhanced antibacterial activity, flame retardancy, water repellency, and UV protection. Traditional methods for improving these qualities in textiles involved dangerous chemicals, energy and water-intensive procedures, harmful emissions. New strategies are presented in response to the current emphasis on process and product sustainability. Nanoparticles (NPs) are suggested as a potential alternative for hazardous components in textile finishing. NPs are found to efficiently decrease virus transmission, limit combustion events, protect against UV radiation, and prevent water from entering, through a variety of mechanisms. Some attempts are made to increase NPs efficiency and promote long-term adherence to textile surfaces. Traditional wet finishing methods are implemented through a combination of advanced green technologies (plasma pre-treatment, ultrasound irradiations, sol-gel, and layer-by-layer self-assembly methods). The fibrous surface is activated by adding functional groups that facilitate NPs grafting on the textile substrate by basic interactions (chemical, physical, or electrostatic), also indirectly via crosslinkers, ligands, or coupling agents. Finally, other green options explore the use of NPs synthesized from bio-based materials or hybrid combinations, as well as inorganic NPs from green synthesis to realize ecofriendly finishing able to provide durable and protective fabrics.</p>","PeriodicalId":205,"journal":{"name":"Macromolecular Rapid Communications","volume":" ","pages":"e2400636"},"PeriodicalIF":4.2000,"publicationDate":"2024-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecular Rapid Communications","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/marc.202400636","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

This work presented an overview of greener technologies for realizing everyday fabrics with enhanced antibacterial activity, flame retardancy, water repellency, and UV protection. Traditional methods for improving these qualities in textiles involved dangerous chemicals, energy and water-intensive procedures, harmful emissions. New strategies are presented in response to the current emphasis on process and product sustainability. Nanoparticles (NPs) are suggested as a potential alternative for hazardous components in textile finishing. NPs are found to efficiently decrease virus transmission, limit combustion events, protect against UV radiation, and prevent water from entering, through a variety of mechanisms. Some attempts are made to increase NPs efficiency and promote long-term adherence to textile surfaces. Traditional wet finishing methods are implemented through a combination of advanced green technologies (plasma pre-treatment, ultrasound irradiations, sol-gel, and layer-by-layer self-assembly methods). The fibrous surface is activated by adding functional groups that facilitate NPs grafting on the textile substrate by basic interactions (chemical, physical, or electrostatic), also indirectly via crosslinkers, ligands, or coupling agents. Finally, other green options explore the use of NPs synthesized from bio-based materials or hybrid combinations, as well as inorganic NPs from green synthesis to realize ecofriendly finishing able to provide durable and protective fabrics.

用于日用纺织品的湿整理方法和纳米粒子的绿色进展。
这项工作概述了实现具有更强抗菌活性、阻燃、防水和防紫外线功能的日常织物的绿色技术。提高纺织品这些品质的传统方法涉及危险化学品、高能耗和高耗水程序以及有害排放物。针对当前对工艺和产品可持续性的重视,我们提出了新的策略。纳米粒子(NPs)被认为是纺织品整理中危险成分的潜在替代品。研究发现,纳米粒子可通过多种机制有效减少病毒传播、限制燃烧事件、抵御紫外线辐射和防止水分进入。为了提高 NPs 的效率并促进其在纺织品表面的长期附着力,人们进行了一些尝试。传统的湿整理方法是通过结合先进的绿色技术(等离子预处理、超声辐照、溶胶-凝胶和逐层自组装方法)来实现的。通过添加功能基团激活纤维表面,这些功能基团可通过基本相互作用(化学、物理或静电),也可通过交联剂、配体或偶联剂间接促进 NPs 接枝到纺织品基材上。最后,其他绿色方案还探索使用由生物基材料或混合材料合成的 NPs,以及绿色合成的无机 NPs,以实现生态友好型整理,提供耐用的保护性织物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Macromolecular Rapid Communications
Macromolecular Rapid Communications 工程技术-高分子科学
CiteScore
7.70
自引率
6.50%
发文量
477
审稿时长
1.4 months
期刊介绍: Macromolecular Rapid Communications publishes original research in polymer science, ranging from chemistry and physics of polymers to polymers in materials science and life sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信