Yunna Ao, Zhiqi Wang, Xinran Yang, Johannes M H Knops, Jiao Wang, Yujie Shi, Junfeng Wang
{"title":"Preferential Carbon Allocation Into Vegetative Ramets and Belowground Organs During the Seed-Filling Stage Limits Seed Set in Leymus chinensis.","authors":"Yunna Ao, Zhiqi Wang, Xinran Yang, Johannes M H Knops, Jiao Wang, Yujie Shi, Junfeng Wang","doi":"10.1111/pce.15228","DOIUrl":null,"url":null,"abstract":"<p><p>Clonal perennial grasses are the dominant species in almost all natural grasslands, however their seed production is typically low. The reasons why seed set is so low remains unclear. We studied a rhizomatous grass (Leymus chinensis) using <sup>13</sup>C tracing the different photosynthetic organs to investigate carbon fixation and allocation during the seed-filling stage. We found that the vegetative ramet leaves are the largest (81%) source for total plant fixed carbon, whereas almost all carbon is allocated to vegetative reproduction. The spike is the largest (54%) carbon source for the seeds. However, the spike produced carbon only allocated 37% to the seeds, with the majority allocated to vegetative reproduction. This preferential carbon allocation to vegetative reproduction limits sexual reproduction. Nitrogen application significantly increased assimilated carbon. However, nearly all increased carbon accumulated in the vegetative reproduction rather than in the seeds. Only the carbon produced by the spike increased its allocation to the seeds by 13%. Taken together, we conclude that the predominance of vegetative reproduction, combined with self-incompatibility, results in low ovule fertilization and very weak seed sink strength for carbon competition, suggests that the weak seed sink strength is the key reason causing low seed set in L. chinensis.</p>","PeriodicalId":222,"journal":{"name":"Plant, Cell & Environment","volume":" ","pages":""},"PeriodicalIF":6.0000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant, Cell & Environment","FirstCategoryId":"2","ListUrlMain":"https://doi.org/10.1111/pce.15228","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Clonal perennial grasses are the dominant species in almost all natural grasslands, however their seed production is typically low. The reasons why seed set is so low remains unclear. We studied a rhizomatous grass (Leymus chinensis) using 13C tracing the different photosynthetic organs to investigate carbon fixation and allocation during the seed-filling stage. We found that the vegetative ramet leaves are the largest (81%) source for total plant fixed carbon, whereas almost all carbon is allocated to vegetative reproduction. The spike is the largest (54%) carbon source for the seeds. However, the spike produced carbon only allocated 37% to the seeds, with the majority allocated to vegetative reproduction. This preferential carbon allocation to vegetative reproduction limits sexual reproduction. Nitrogen application significantly increased assimilated carbon. However, nearly all increased carbon accumulated in the vegetative reproduction rather than in the seeds. Only the carbon produced by the spike increased its allocation to the seeds by 13%. Taken together, we conclude that the predominance of vegetative reproduction, combined with self-incompatibility, results in low ovule fertilization and very weak seed sink strength for carbon competition, suggests that the weak seed sink strength is the key reason causing low seed set in L. chinensis.
期刊介绍:
Plant, Cell & Environment is a premier plant science journal, offering valuable insights into plant responses to their environment. Committed to publishing high-quality theoretical and experimental research, the journal covers a broad spectrum of factors, spanning from molecular to community levels. Researchers exploring various aspects of plant biology, physiology, and ecology contribute to the journal's comprehensive understanding of plant-environment interactions.