Yuke Su, Suqin Liu, Weiwei Zhu, Kui Huang, Da Huang, Peng Jiang, Jianhui Liu, Guang Yang, Zhen He, Jue Wang
{"title":"Regulating Molecular Interactions in Polybenzimidazole Membrane for Efficient Vanadium Redox Flow Battery.","authors":"Yuke Su, Suqin Liu, Weiwei Zhu, Kui Huang, Da Huang, Peng Jiang, Jianhui Liu, Guang Yang, Zhen He, Jue Wang","doi":"10.1002/cssc.202401576","DOIUrl":null,"url":null,"abstract":"<p><p>The tightly bonded structure of polybenzimidazole (PBI) membrane is the origin of its poor proton conductivity, which severely hinders achieving a cost-effective membrane for vanadium redox flow battery (VRFB). It desires a strategy to relax the membrane structure to significantly improve the proton conductivity and maintain its structure stability. Therefore, this work proposes a novel strategy through regulating molecular interactions within PBI membrane to loosen up the structure of PBI membrane and dramatically enhance the proton conductivity. The interactions in PBI membrane are switched by DMSO/water and acid through sequentially treating membrane with these solutions. The efficient PBI membrane prepared using this strategy demonstrates an outstanding performance for VRFB, with the proton conductivity enhanced by 3850 % (from 1.9 to 76.3 mS cm<sup>-1</sup>), and VRFB achieves a high energy efficiency of 80.5 % under 200 mA cm<sup>-2</sup>. More importantly, this work shed lights on the structure-property relationship of PBI membrane, and the mechanism in enhancing proton conductivity is unraveled, which is of great significance for the development of VRFB membranes.</p>","PeriodicalId":149,"journal":{"name":"ChemSusChem","volume":" ","pages":"e202401576"},"PeriodicalIF":7.5000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemSusChem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cssc.202401576","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The tightly bonded structure of polybenzimidazole (PBI) membrane is the origin of its poor proton conductivity, which severely hinders achieving a cost-effective membrane for vanadium redox flow battery (VRFB). It desires a strategy to relax the membrane structure to significantly improve the proton conductivity and maintain its structure stability. Therefore, this work proposes a novel strategy through regulating molecular interactions within PBI membrane to loosen up the structure of PBI membrane and dramatically enhance the proton conductivity. The interactions in PBI membrane are switched by DMSO/water and acid through sequentially treating membrane with these solutions. The efficient PBI membrane prepared using this strategy demonstrates an outstanding performance for VRFB, with the proton conductivity enhanced by 3850 % (from 1.9 to 76.3 mS cm-1), and VRFB achieves a high energy efficiency of 80.5 % under 200 mA cm-2. More importantly, this work shed lights on the structure-property relationship of PBI membrane, and the mechanism in enhancing proton conductivity is unraveled, which is of great significance for the development of VRFB membranes.
期刊介绍:
ChemSusChem
Impact Factor (2016): 7.226
Scope:
Interdisciplinary journal
Focuses on research at the interface of chemistry and sustainability
Features the best research on sustainability and energy
Areas Covered:
Chemistry
Materials Science
Chemical Engineering
Biotechnology