Seonjeong Cheon, Beomseo Kim, Hyun-Woo Kim, DongYeon Kim, Jong-In Han
{"title":"Dynamic Reconstruction of Cu Catalyst Under Electrochemical NO Reduction to NH<sub>3</sub>.","authors":"Seonjeong Cheon, Beomseo Kim, Hyun-Woo Kim, DongYeon Kim, Jong-In Han","doi":"10.1002/cssc.202401978","DOIUrl":null,"url":null,"abstract":"<p><p>The electrochemical reduction of nitric oxide (NO) to ammonia (NH<sub>3</sub>) offers a sustainable way of simultaneously treating the air pollutant and producing a useful chemical. Among catalyst candidates, Cu emerges as a stand-out choice for its superb NH<sub>3</sub> selectivity and production rate. However, a comprehensive study concerning its catalytic behavior in the NO reduction environment is still lacking. Here, we unravel the dynamic rearrangement of Cu catalysts during NO reduction: the emergence of a bundled nanowire structure dependent on the applied potential. This unique structure is closely linked to an enhancement in double-layer capacitance, leading to a progressive increase in current density from 236 mA cm<sup>-2</sup> by 20 % over 1 h, while maintaining a Faradaic efficiency of 95 % for NH<sub>3</sub>. Characterizations of Cu oxidation states suggest that the nanostructure results from the dissolution-redeposition of Cu in the aqueous electrolyte, influenced by the interaction with NO or other reactive intermediates. This understanding contributes to the broader exploration of Cu-based catalysts for sustainable and efficient NH<sub>3</sub> synthesis from NO.</p>","PeriodicalId":149,"journal":{"name":"ChemSusChem","volume":" ","pages":"e202401978"},"PeriodicalIF":7.5000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemSusChem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cssc.202401978","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The electrochemical reduction of nitric oxide (NO) to ammonia (NH3) offers a sustainable way of simultaneously treating the air pollutant and producing a useful chemical. Among catalyst candidates, Cu emerges as a stand-out choice for its superb NH3 selectivity and production rate. However, a comprehensive study concerning its catalytic behavior in the NO reduction environment is still lacking. Here, we unravel the dynamic rearrangement of Cu catalysts during NO reduction: the emergence of a bundled nanowire structure dependent on the applied potential. This unique structure is closely linked to an enhancement in double-layer capacitance, leading to a progressive increase in current density from 236 mA cm-2 by 20 % over 1 h, while maintaining a Faradaic efficiency of 95 % for NH3. Characterizations of Cu oxidation states suggest that the nanostructure results from the dissolution-redeposition of Cu in the aqueous electrolyte, influenced by the interaction with NO or other reactive intermediates. This understanding contributes to the broader exploration of Cu-based catalysts for sustainable and efficient NH3 synthesis from NO.
期刊介绍:
ChemSusChem
Impact Factor (2016): 7.226
Scope:
Interdisciplinary journal
Focuses on research at the interface of chemistry and sustainability
Features the best research on sustainability and energy
Areas Covered:
Chemistry
Materials Science
Chemical Engineering
Biotechnology