Raphael L Streng, Samuel Reiser, Sabrina Wager, Nykola Pommer, Aliaksandr S Bandarenka
{"title":"A Fast and Highly Stable Aqueous Calcium-Ion Battery for Sustainable Energy Storage.","authors":"Raphael L Streng, Samuel Reiser, Sabrina Wager, Nykola Pommer, Aliaksandr S Bandarenka","doi":"10.1002/cssc.202401469","DOIUrl":null,"url":null,"abstract":"<p><p>Aqueous alkali-ion batteries are gaining traction as a low-cost, sustainable alternative to conventional organic lithium-ion batteries. However, the rapid degradation of commonly used electrode materials, such as Prussian Blue Analogs and carbonyl-based organic compounds, continues to challenge the economic viability of these devices. While stability issues can be addressed by employing highly concentrated water-in-salt electrolytes, this approach often requires expensive and, in many cases, fluorinated salts. Here, we show that replacing monovalent K<sup>+</sup> ions with divalent Ca<sup>2+</sup> ions in the electrolyte significantly enhances the stability of both a copper hexacyanoferrate cathode and a polyimide anode. These findings have direct implications for developing an optimized aqueous Ca-ion battery that demonstrates exceptional fast-charging capabilities and ultra-long cycle life and points toward applying Ca-based batteries for large-scale energy storage.</p>","PeriodicalId":149,"journal":{"name":"ChemSusChem","volume":" ","pages":"e202401469"},"PeriodicalIF":7.5000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemSusChem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cssc.202401469","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Aqueous alkali-ion batteries are gaining traction as a low-cost, sustainable alternative to conventional organic lithium-ion batteries. However, the rapid degradation of commonly used electrode materials, such as Prussian Blue Analogs and carbonyl-based organic compounds, continues to challenge the economic viability of these devices. While stability issues can be addressed by employing highly concentrated water-in-salt electrolytes, this approach often requires expensive and, in many cases, fluorinated salts. Here, we show that replacing monovalent K+ ions with divalent Ca2+ ions in the electrolyte significantly enhances the stability of both a copper hexacyanoferrate cathode and a polyimide anode. These findings have direct implications for developing an optimized aqueous Ca-ion battery that demonstrates exceptional fast-charging capabilities and ultra-long cycle life and points toward applying Ca-based batteries for large-scale energy storage.
期刊介绍:
ChemSusChem
Impact Factor (2016): 7.226
Scope:
Interdisciplinary journal
Focuses on research at the interface of chemistry and sustainability
Features the best research on sustainability and energy
Areas Covered:
Chemistry
Materials Science
Chemical Engineering
Biotechnology