Chiwon Choi, Hyunmin Yoon, Seungyeop Kang, Dong Il Kim, John Hong, Minjeong Shin, Dong-Joo Yoo, Minkyung Kim
{"title":"Achieving High Stability and Capacity in Micron-Sized Conversion-Type Iron Fluoride Li-Metal Batteries.","authors":"Chiwon Choi, Hyunmin Yoon, Seungyeop Kang, Dong Il Kim, John Hong, Minjeong Shin, Dong-Joo Yoo, Minkyung Kim","doi":"10.1002/advs.202410114","DOIUrl":null,"url":null,"abstract":"<p><p>Iron fluoride, a conversion-type cathode material with high energy density and low-cost iron, holds promise for Li-ion batteries but faces challenges in synthesis, conductivity, and cycling stability. This study addresses these issues by synthesizing micron-sized iron-fluoride using a simple solid-state synthesis. Despite a large particle size, a high capacity of 571 mAh g<sup>-1</sup> is achieved, which is attributed to the unique surface and internal pores within the iron-fluoride particles, which provided a large surface area. This is the first study to demonstrate the feasibility of using large iron fluoride particles to enhance the energy density of the electrode and achieve an iron fluoride full cell with high capacity. Also, the cause of the capacity fading is investigated. Electrode delamination from the current collector, which is the main cause of capacity fading in early cycles, is resolved using a carbon-coated aluminum (C/Al) current collector. Moreover, iron (Fe) dissolution and the deposition of dissolved Fe on the Li metal also contributed significantly to the degradation. Localized high-concentration electrolytes (LHCEs) suppress iron dissolution and Li dendrite growth, resulting in long-cycle stability for 300 cycles. This study provides insights into the further development of conversion-type metal fluorides across various compositions.</p>","PeriodicalId":117,"journal":{"name":"Advanced Science","volume":null,"pages":null},"PeriodicalIF":14.3000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/advs.202410114","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Iron fluoride, a conversion-type cathode material with high energy density and low-cost iron, holds promise for Li-ion batteries but faces challenges in synthesis, conductivity, and cycling stability. This study addresses these issues by synthesizing micron-sized iron-fluoride using a simple solid-state synthesis. Despite a large particle size, a high capacity of 571 mAh g-1 is achieved, which is attributed to the unique surface and internal pores within the iron-fluoride particles, which provided a large surface area. This is the first study to demonstrate the feasibility of using large iron fluoride particles to enhance the energy density of the electrode and achieve an iron fluoride full cell with high capacity. Also, the cause of the capacity fading is investigated. Electrode delamination from the current collector, which is the main cause of capacity fading in early cycles, is resolved using a carbon-coated aluminum (C/Al) current collector. Moreover, iron (Fe) dissolution and the deposition of dissolved Fe on the Li metal also contributed significantly to the degradation. Localized high-concentration electrolytes (LHCEs) suppress iron dissolution and Li dendrite growth, resulting in long-cycle stability for 300 cycles. This study provides insights into the further development of conversion-type metal fluorides across various compositions.
期刊介绍:
Advanced Science is a prestigious open access journal that focuses on interdisciplinary research in materials science, physics, chemistry, medical and life sciences, and engineering. The journal aims to promote cutting-edge research by employing a rigorous and impartial review process. It is committed to presenting research articles with the highest quality production standards, ensuring maximum accessibility of top scientific findings. With its vibrant and innovative publication platform, Advanced Science seeks to revolutionize the dissemination and organization of scientific knowledge.